
Java Programming
Fundamentals

JVPG-SSMN-0101A

Java Programming Fundamentals
JVPG-SSMN-0101A

©1988-2000 Wave Technologies International, Inc.,
a Thomson Learning company.

Thomson Learning™ is a trademark used herein under license.
All rights reserved.

Printed in the United States of America. No part of this book may be used or reproduced in any
form or by any means, or stored in a database or retrieval system, without prior written
permission of the publisher. Making copies of any part of this book for any purpose other than
your own personal use is a violation of United States copyright laws. For information, contact
Wave Technologies International, Inc., 10845 Olive Blvd., Suite 250, St. Louis, Missouri
63141.

This book is sold as is, without warranty of any kind, either express or implied, respecting the
contents of this book, including, but not limited to, implied warranties for the book’s quality,
performance, merchantability, or fitness for any particular purpose. Neither Wave Technologies
International, Inc., nor its dealers or distributors shall be liable to the purchaser or any other
person or entity with respect to any liability, loss, or damage caused or alleged to be caused
directly or indirectly by this book.

Trademarks

Trademarks and registered trademarks of products mentioned in this book are held by the
companies producing them. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

The Wave Technologies International, Inc. logo is a registered trademark of Wave Technologies
International, Inc., St. Louis, Missouri.

Copyrights of any screen captures in this book are the property of the software’s manufacturer.

Mention of any products in this book in no way constitutes an endorsement by Wave
Technologies International, Inc.

10 9 8 7 6 5 4 3 2 1

iiiS E L F - S T U D Y

Contents
Introduction 1

Course Purpose... 1
Course Goals .. 1
Exercises ... 2
Scenario-Based Learning ... 3
Multimedia Overview ... 3

Videos... 3
Assessment .. 4

Hardware and Software Requirements .. 4

Chapter 1—Java Runtime Environment 5

Objectives ... 6
Pre-Test Questions ... 6
Introduction ... 7
The Java Virtual Machine ... 7
The Java 2 Software Development Kit .. 8
Installation.. 8

Windows 95/98/Me.. 9
Windows NT/2000 .. 9
 Linux ... 10
Creating a Simple, Stand-Alone Application ... 11

Creating a Simple Applet .. 13
Java Comments... 14
Sun Certification .. 15
Summary .. 16
Post-Test Questions.. 16

Chapter 2—Data Types, Variables and Operators 17

Objectives ... 18
Pre-Test Questions ... 18
Introduction ... 19
Data Types ... 19
Variables ... 20

Default variable values .. 21
Variable declaration and initialization ... 21

Casting ... 22

iv Contents

Operators.. 24
Arithmetic operators ... 24
Relational operators .. 25
Logical operators... 26

Precedence .. 27
Sun Certification .. 28
Summary .. 29
Post-Test Questions.. 30

Chapter 3—Control Statements 33

Objectives ... 34
Pre-Test Questions ... 34
Introduction ... 34
Code Blocks.. 35
Expressions ... 36
Conditional Statements .. 38

if statement ... 38
switch/case statement .. 40

Iteration (Loop) Statements .. 42
while loop (entry condition loop).. 42
do while loop (exit condition loop) ... 43
for loop ... 43
Nested loops (break and continue) .. 44
Exercise 3-1: Using while and for loops... 46

Sun Certification .. 47
Summary .. 48
Post-Test questions ... 48

Chapter 4—Methods 49

Objectives ... 50
Pre-Test Questions ... 50
Introduction ... 51
Methods ... 51
Return Statement.. 53
Calling a Method.. 55
Parameters .. 57
Pass by Value .. 58
Overloading .. 60

Exercise 4-1: Writing methods.. 62
Sun Certification .. 63
Summary .. 64
Post-Test Questions.. 64

Contents v

Chapter 5—Arrays 65

Objectives ... 66
Pre-Test Questions ... 66
Introduction ... 67
What Is an Array? ... 67
Initializing an Array .. 68
Using an Array.. 70
Passing an Array to a Method ... 74
Methods with an Array Return Type .. 75
Garbage Collection ... 76
Command Line Parameters... 78

Exercise 5-1: Using arrays ... 79
Graduating Task #1: Creating a binary search... 79
Sun Certification .. 81
Summary .. 83
Post-Test Questions.. 83

Chapter 6—Classes and Objects 85

Objectives ... 86
Pre-Test Questions ... 86
Introduction ... 87
Object-Oriented Programming... 87
What Is a Class? .. 88
What Is an Object? ... 89
Instance and Class Members ... 89

Instance members ... 90
Class members .. 93

Abstraction ... 95
Object References ... 96

Exercise 6-1: Creating your own classes... 98
Sun Certification .. 99
Summary .. 100
Post-Test Questions.. 101

Chapter 7—Inheritance 103

Objectives ... 104
Pre-Test Questions ... 104
Introduction ... 105
What Is Inheritance? ... 105

Using inheritance.. 106
Extending Classes ... 107

Using this and super() ... 110
The instanceof Operator ... 111

vi Contents

Overriding Methods ... 112
Exercise 7-1: Implementing inheritance .. 113

Sun Certification .. 114
Summary .. 116
Post-Test Questions.. 117

Chapter 8—Constructors 119

Objectives ... 120
Pre-Test Questions ... 120
Introduction ... 121
What Is a Constructor? ... 121

What can constructors do? .. 122
Using Constructors ... 123
This .. 126

this() as a constructor .. 126
Avoiding namespace conflicts.. 127
Super .. 128

Constructor Process .. 129
Constructors and Callbacks... 130
Strings and StringBuffer.. 132

String constructors .. 132
String characteristics ... 133
Methods of String ... 135
StringBuffer .. 136
Exercise 8-1: Building constructors ... 137
Exercise 8-2: Implementing callbacks.. 138

Sun Certification .. 139
Summary .. 142
Post-Test Questions.. 143

Chapter 9—Interfaces and Abstract Classes 145

Objectives ... 146
Pre-Test Questions ... 146
Introduction ... 147
What Is an Interface? .. 147

Contents of an interface .. 148
Interface functions .. 149

Polymorphism .. 151
What Is an Abstract Class? .. 158
Graduating Task #2: Interfaces and Polymorphism... 161
Sun Certification .. 161
Summary .. 162
Post-Test Questions.. 162

Contents vii

Chapter 10—Packages and Access Modifiers 163

Objectives ... 164
Pre-Test Questions ... 164
Introduction ... 165
Packages and Access Modifiers .. 165

Packages.. 165
Access modifiers .. 167

Comparison Between Java 1.1 And Java 2... 168
Information Hiding .. 169
Encapsulation ... 171

Exercise 10-1: Using encapsulation, accessors and mutators .. 173
Sun Certification .. 173
Summary .. 174
Post-Test Questions.. 175

Chapter 11—Swing Components 177

Objectives ... 178
Pre-Test Questions ... 178
Introduction ... 179
What Is the AWT?.. 179

Heavyweight components (peer pattern) ... 180
AWT 1.1 .. 180

What Is Swing? ... 181
Model View Controller (MVC) programming paradigm .. 182

Basic Swing Components.. 183
Graphical widgets ... 185
Containers .. 203

JavaBeans.. 207
Sun Certification .. 208
Summary .. 208
Post-Test Questions.. 209

Chapter 12—Layout Managers 211

Objectives ... 212
Pre-Test Questions ... 212
Introduction ... 213
What Is a Layout Manager? .. 213

FlowLayout... 214
GridLayout ... 216
BorderLayout.. 218
BoxLayout .. 221

viii Contents

Swing.. 223
Strut ... 223
Glue.. 225
Combining layouts ... 227

Graduating Task #3: Creating sophisticated layouts.. 230
Sun Certification .. 231
Summary .. 232
Post-Test Questions.. 232

Chapter 13—Graphics 233

Objectives ... 234
Pre-Test Questions ... 234
Introduction ... 235
What Are Graphics in Java? .. 235
Graphics Class .. 236

drawString().. 244
drawLine() .. 244
drawRect() .. 245
drawImage().. 247
Color class... 248
Font class .. 250
Exercise 13-1: Drawing to your Scribble JFrame ... 252

Sun Certification .. 253
Summary .. 253
Post-Test Questions.. 254

Chapter 14—The Delegation Model 257

Objectives ... 258
Pre-Test Questions ... 258
Introduction ... 259
What Is an Event? ... 259
SDK 1.3 Event Handling.. 260

Generating the event object .. 261
Sending the event object to the listener ... 261
Preparing the listener to receive the event.. 262
Example: Creating a closeable JFrame ... 263
JFrame convenience methods for event handling .. 268
Example: Event handling and callbacks... 269

Sun Certification .. 274
Summary .. 274
Post-Test Questions.. 275

Contents ix

Chapter 15—Inner Classes 277

Objectives ... 278
Pre-Test Questions ... 278
Introduction ... 279
What Is an Inner Class? .. 279
Inner Classes for Event Handling.. 282
Graduating Task #4: Event-enabling the Scribble Application 286
Sun Certification .. 287
Summary .. 289
Post-Test Questions.. 290

Chapter 16—Applets 291

Objectives ... 292
Pre-Test Questions ... 292
Introduction ... 293
Applets and Web Browsers.. 294

JApplets .. 294
Applet life cycle... 295
The <APPLET></APPLET> tags.. 296
Passing parameters to applets .. 298
Applets should not be trusted.. 300

Converting an Application into an Applet .. 301
Converting an Applet into an Application .. 306

Exercise 16-1: Converting the Scribble application into an applet 308
Sun Certification .. 308
Summary .. 309
Post-Test Questions.. 309

Chapter 17—Exceptions 311

Objectives ... 312
Pre-Test Questions ... 312
Introduction ... 313
What Is an Exception? .. 313

Errors.. 314
Exceptions .. 314

When Bad Things Happen to Good Programs ... 316
Ignoring the Exception ... 316
Handling the Exception .. 317
Throwing the Exception to the calling method ... 319
Handling and rethrowing the Exception ... 320

Creating and Throwing Your Own Exceptions ... 321

x Contents

Exception Handling Tips.. 324
Sun Certification .. 325
Summary .. 326
Post-Test Questions.. 326

Chapter 18—Creating Threads and Thread Methods 327

Objectives ... 328
Pre-Test Questions ... 328
Introduction ... 329
What Are Threads? ... 329
How Operating Systems Handle Multitasking.. 330
Types of Threads in Java... 330
Creating Threads .. 332

Subclassing the Thread class.. 332
Implementing the Runnable interface ... 335
Which technique? ... 337
Thread states... 339
The currentThread(), getName() and sleep() methods .. 341
The setName() and setPriority() methods ... 343
The yield() method ... 345

Graduating Task #5: Creating a threaded digital clock.. 346
Sun Certification .. 347
Summary .. 347
Post-Test Questions.. 348

Chapter 19—Synchronization 351

Objectives ... 352
Pre-Test Questions ... 352
Introduction ... 353
What Is Thread Synchronization? ... 353
Thread Racing .. 353
Synchronized and the Object Monitor.. 355
Thread Race Condition .. 356

Competing for resources ... 357
Synchronizing the methods... 359
Atomic processes ... 360

Sophisticated Thread Synchronization .. 361
Consumer/producer scenario .. 362

Deadlocks ... 368
Graduating Task #6: Enhancing the Digital Clock with Advanced

Thread Techniques.. 369
Sun Certification .. 370
Summary .. 370
Post-Test Questions.. 371

Contents xi

Chapter 20—Streams and Serialization 373

Objectives ... 374
Pre-Test Questions ... 375
Introduction ... 375
What Is a Stream? ... 376
InputStream, OutputStream, Reader and Writer .. 377
Files .. 378

Instantiating a File object.. 379
Working with a File object.. 380

Stream Classes of java.io.* ... 382
System.in and System.out ... 384
Reading bytes from System.in ... 385
Converting a byte stream into a character stream .. 387
Wrapper streams ... 389
File I/O... 391

Serialization .. 393
The process of object serialization ... 394
Transient variables and security... 399

Graduating Task #7: Building a Simple Word Processor... 400
Sun Certification .. 401
Summary .. 403
Post-Test Questions.. 404

Appendix A—Answers to Pre-Test and Post-Test Questions 405

Glossary 417

Index 429

xii Contents

1
S E L F - S T U D Y

Introduction
C O U R S E P U R P O S E

This coursebook was developed for self-study training and will assist you during class.
Along with comprehensive instructional text and objectives checklists, this coursebook
provides easy-to-follow hands-on lab exercises and a glossary of specific terms. It also
provides Internet addresses needed to complete some exercises, although due to the
constantly changing nature of the Internet, some addresses may no longer be valid.

Many coursebooks also list additional reference works for continued learning outside the
classroom. When you return to your home or office, you will find this coursebook to be a
valuable resource, one to which you can refer whether you want to review the steps in an
exercise or apply what you have learned.

This course teaches you how to write Java applications and applets. You will learn the Java
language mechanics found in other programming languages, such as variables, iterations,
control statements, methods and arrays. You will also discuss object-oriented theory as it
relates to Java. You will create Graphical User Interfaces (GUIs) for both applications and
applets, emphasizing components, layouts, and graphics. This course will also prepare
you for the Sun Certified Programmer Exam for the Java 2 Platform by providing reviews
and examples relative to the exam.

Upon completion of this course, you will be experienced in writing Java applications and
applets. You will also be very familiar and comfortable the Java 2 API.

C O U R S E G O A L S

This self-study course will provide you with the information you need to complete the
following:

� Describe the Java Runtime Environment (JRE).

� Use Java variables, control statements, methods and arrays.

� Describe object-oriented theory, including abstraction, encapsulation, inheritance
and polymorphism.

� Describe method overloading and overriding.

� Use Java static and instance members.

2 Introduction

� Create Java constructors.

� Identify the differences between instance and class members.

� Use Java abstract classes and interfaces.

� Use Java Strings and StringBuffers.

� Describe Java packages and accessibility.

� Use the Java Abstract Windowing Toolkit (AWT) and Swing components central
to JDK 1.2.

� Use the JDK 1.2.x event delegation model.

� Define applets and the applet life cycle.

� Throw and handle exceptions.

� Create threads.

� Use streams.

� Describe Java and networking.

� Complete Sun certification examination examples.

E X E R C I S E S

The exercises in this manual are designed to give you hands-on practice working in both
stand-alone and network environments. It is suggested that you complete the exercises
when referenced. However, this may not always be convenient. If you need to skip an
exercise, you should plan on completing the exercise later when time and circumstances
allow.

You may find that there are some exercises that you are unable to complete due to
hardware or software requirements. Do not let this stop you from completing the other
exercises in this manual.

NOTICE:

The exercises in this self-study product are designed to be used on a system that is
designated for training purposes only. Practicing the exercises on a LAN or workstation
that is used for other purposes may cause configuration problems, which could require a
reinstallation and/or restoration from a tape backup of the original configuration. Please
keep this in mind when working through the exercises.

Scenario-Based Learning 3

S C E N A R I O - B A S E D L E A R N I N G

This self-study manual uses a number of scenario-based learning exercises. In these, you
are presented with a situation similar to those you are likely to encounter in day-to-day
support and management. You will be provided with the information you need and
asked to determine the best solution. A suggested solution is provided at the back of the
self-study manual.

These exercises are being used to supplement hands-on practice and to help get you
started thinking critically about practical applications. In some cases, they have been
used as a replacement for hands-on practice for scenarios where it would be especially
difficult to emulate a real-world situation.

It is important that you take the time to work through the scenario-based exercises.
These are an important supplement to the training materials and are meant to reinforce
the text information in your manual.

M U L T I M E D I A O V E R V I E W

The Interactive Learning CD-ROM is a robust collection of learning tools designed to
enhance your understanding and prepare you for certification. You access these tools
from the Start menu: select Wave Interactive Learning and then select the appropriate
curriculum.

Videos

A key element of the Interactive Learning CD-ROM included with this course is digital
video. Digital video lessons describe key concepts covered in the manual. Often concepts
are best understood by drawing a picture. Digital video segments provide a graphical
illustration, accompanied by an instructor’s narration. These lessons are ideal both as
introductions to key concepts and for reinforcement.

4 Introduction

Assessment

As reinforcement and review for certification exams, the Challenge! Interactive is
significantly helpful. The Challenge! contains sample test items for each exam. The
sample tests are comprised of multiple-choice, screen simulation, and scenario questions
to better prepare you for exams. It is a good idea to take the Challenge! test on a particular
exam, read the study guide and then take the Challenge! test again. It is useful to take the
Challenge! tests as frequently as possible because they are such excellent reinforcement
tools.

H A R D W A R E A N D S O F T W A R E R E Q U I R E M E N T S

Hardware Requirements

Software Requirements

� Microsoft Windows 95, 98, ME, 2000, NT 4.0 or higher.

� Netscape Navigator 4.5 or higher.

� Microsoft Internet Explorer 5.5 or higher

� Java Development Kit version 1.2.2 or higher (http://java.sun.com)

CIW hardware specifications Greater than or equal to the following
Processor Intel Pentium II (or equivalent) personal computer with processor speed

greater than or equal to 300 MHz

L2 cache 256 KB

Hard disk 2-GB hard drive

RAM At least 128 MB

CD-ROM 32X

Video adapter At least 4 MB

Monitor 15-inch monitor

Internet Connectivity 28.8 modem and ISP account

Sound 16-bit sound card or better with speakers

Network Interface Card 10BaseT and 100BaseT

M A J O R T O P I C SM A J O R T O P I C S

1

Java Runtime Environment

Objectives .. 6

Pre-Test Questions... 6

Introduction .. 7

The Java Virtual Machine .. 7

The Java 2 Software Development Kit 8

Installation... 8

Creating a Simple Applet ... 13

Java Comments.. 14

Sun Certification ... 15

Summary ... 16

Post-Test Questions ... 16

6 Chapter 1—Java Runtime Environment

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Identify the differences between stand-alone applications and applets.

� Describe the role of the Java Virtual Machine.

� Create a main() method.

� Describe the differences between *.java and *.class files.

� Use statement terminators.

� Use Java comments.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is the extension of a Java file?

...

...

2. What is the extension of a compiled Java file?

...

...

Introduction 7

I N T R O D U C T I O N

One of the major difficulties associated with programming over the years has been the
problem of creating cross-platform programs. How can one create software, which, when
compiled, will run exactly the same way from one type of computer to the next? This is
the problem for which Java was created. Java is a programming language which allows a
programmer to create and compile a program on one machine that will run on computers
with different operating systems. For example, one could create a program on an Apple
computer that could then run on Windows, Linux, or Solaris. This is a definite advantage
over standard programming languages which require that programs be compiled for each
operating system. In this chapter we will walk through a basic installation of the Java
Development Kit (JDK) and the creation, compilation and execution of a small Java
program.

T H E J A V A V I R T U A L M A C H I N E

The Java Virtual Machine (JVM) separates Java from most other programming
languages. One of the primary design goals of the Java language is to enable the same
code to run on any platform. The JVM is a software program that behaves like an entire
computer. By using this virtual computer on different platforms (UNIX, Win32,
Macintosh, and so forth), you can reuse programs without creating a version for each
platform. You will always run Java programs in a JVM.

Java allows you to write stand-alone applications (Java programs that need not be run in a
browser), servlets (Java applications that run on a server) or applets (which must be run in
a Web browser or a program called Appletviewer). When the code is compiled, the
compiler creates bytecode that is stored in a .class file. The virtual machine is responsible
for interpreting this byte code into a machine-useable format.

Because of the combination of compilation and interpretation, Java is considered to be a
hybrid language. Note that many compilers exist that will compile Java code into a native
format. If this is done, the compiled program will not be portable; however, the program
will execute without the virtual machine.

8 Chapter 1—Java Runtime Environment

T H E J A V A 2 S O F T W A R E D E V E L O P M E N T K I T

The development platform used in this course is the Java 2 Software Development Kit
(SDK), Standard Edition, v 1.2.2 or higher. The Java 2 SDK was previously known as the
Java Development Kit (JDK) 1.2, and it is backward compatible with JDK 1.1. It
contains several components, including:

� The Java Runtime Environment (JRE), which provides the JVM.

� The development tools and compilation libraries necessary to create Java
applications and applets. This grouping includes the Java compiler, debugging
programs and tools to run applets without a browser.

I N S T A L L A T I O N

Below are the installation procedures for Microsoft Windows and Linux operating
systems. If you do not have the current software from Sun, you can download it from
http://java.sun.com/products. Look for the most recent release of the Java2 Software
Development Kit (SDK) Standard Edition. At the time of this writing the latest release
was version 1.3.

Installation 9

Windows 95/98/Me

1. Once you have the installer program downloaded to your computer, simply run it
by double clicking its icon.

2. You will be prompted to accept some license agreements and to select an install
directory (The default for the current release is C:/jdk1.3, if you change this you
should note the path to which you change it).

3. You will also be prompted for the various packages to install (Again, it is
recommended to install all of them, although if you are short of disk space, the
demo and/or the sources packages would probably suffice). Once you have
selected the packages you want, the installation program will do its job.

4. Once the installation program is finished, you should put the Java directory into
your Path so that it can be run from any directory. To do this, click Start/Run and
run sysedit. In AUTOEXEC.BAT you need to edit the PATH statement to
include the directory containing the Java executables. These executables are in the
\bin directory within the installation directory that you chose in step 2. Here is an
example of a PATH statement where Java was installed to the default directory.
The text after the last semicolon is what you would need to add.

PATH C:\WINDOWS;C:\WINDOWS\COMMAND;C:\JDK1.3\BIN

You can then activate your changes by opening a Command Prompt window and
typing “autoexec.bat” at the prompt. If you do not do this, the PATH will not be
reset until you restart Windows.

5. To check that Java has been set up correctly, open up a Command Prompt window
and type javac - if everything is set up correctly, it should return usage options.

Windows NT/2000

The installation procedure for NT and 2000 should be done while logged in as
administrator. The process itself is identical to that for Windows 95/98/Me except for
the PATH setting procedure.

To set the PATH in NT/2000, go to the Control Panel and double click the System Icon.
Go to the Advanced tab and select Environment. Look for “Path” in the System Variables
list and edit it as was described above. Then click OK, SET, or APPLY. The new Path
will take effect with every new Command Prompt window you open.

10 Chapter 1—Java Runtime Environment

 Linux

At the time or this writing, Sun provided two methods of installation on a Linux
machine, one via RPM file and one via shell script. The following procedure utilizes the
shell script method as it is generally not dependent on the version of Linux you are
running.

1. Once you have the installation file saved to your computer, move it to the
directory you want to install java in (it will make its own subdirectory), and make
the program executable. To make it executable, open a terminal (if you are in
X Window) and type

chmod +x j2sdk*.bin

2. Then run the program by typing the file’s name at the prompt, for example:

johndoe$./j2sdk-1_3_0-linux.bin

3. You will be prompted to accept the licensing agreement. If you agree, type yes.
The installation program will unpack the files and install them in the directory you
chose in step 1. Once it is finished, if you type “ls” you should see a new directory
named jdk1.# that corresponds to the package you installed.

4. Now you should set the Path environment variable to point to the directory
containing the java executables. The method for doing this varies with the type of
shell you are working under (bash,csh,sh etc...), so it is left to the reader to decide.

5. Once the PATH is set, you can test that it is correct by going to a command
prompt and, from any directory, typing javac. If everything is set correctly, it
should return usage options.

Installation 11

Creating a Simple, Stand-Alone Application

You will begin writing a simple program by defining a class. Give the class a name and a
pair of braces to contain the body of the class. By convention, the class name should start
with a capital letter as in the following example:

class HelloWorld

{

}

When you write a stand-alone application, the Java Virtual Machine must know where to
begin executing the code. To begin executing code, the JVM looks for and calls a special
method by the name of public static void main(String[] args). The JVM uses this method
to begin executing your program.

class HelloWorld

{

 public static void main(String[] args)

 {

 System.out.println("Hello World!");

 }

}

This program is complete. Note that Java programs are case-sensitive; the word Class is
not the same as class. You must save the program with your text editor as HelloWorld.java
(giving it the same name as your class), and compile it using a Java compiler. You can use
the Javac program if you have the Java 2 Software Development Kit (SDK) supplied by
Sun.

javac HelloWorld.java

The Java compiler converts your source code (saved as HelloWorld.java, a text file) to the
HelloWorld.class file. This *.class file is no longer a standard text file, but a file compiled
into bytecode.

12 Chapter 1—Java Runtime Environment

Bytecode is another element that makes Java different from other programming
languages. Other compiled programming languages generate machine dependent
binaries, which are files that contain native machine language statements. To make Java
portable, the Javac compiler generates bytecode. Java bytecode is composed of an
instruction set native only to the JVM. Because JVMs exist for multiple platforms, the
Java bytecode is portable to any JVM. This portability makes Java incredibly powerful,
while at the same time, it makes Java less robust than languages such as C++.

TECH TIP:
As noted earlier, bytecode is interpreted by the JVM. However, the loss of speed
caused by interpretation can be overcome. If the code is compiled into native
binaries, the program will execute like any other binary.

To execute the program, you must run it in a JVM. This is accomplished by going to the
command prompt and invoking the Java interpreter java:

java HelloWorld

Note that you type java HelloWorld, not java HelloWorld.class. When you enter the
proper command, the JVM will display "Hello World!" in a command line window. The
Java application development cycle is shown in Figure 1-1.

Figure 1-1: Java development cycle

*.java *.class Output Window
Text Editor javac java

Creating a Simple Applet 13

C R E A T I N G A S I M P L E A P P L E T

Applets are Java programs that run within a Java-enabled Web browser. They do not
utilize the main() method as stand alone applications do. Instead there is a hierarchy of
methods that are run at startup. This will be discusses in more detail later. For now,
open up a text editor and enter the following program.

import java.applet.Applet;

import java.awt.Graphics;

public class HelloApplet extends Applet

{

 public void paint(Graphics g)

 {

 g.drawString(“Hello World”, 10, 10);

 }

}

Save this file as HelloApplet.java (you MUST give the file the same name as the primary
class). Once it is saved, compile it. Open a command prompt, go to the directory you
saved the file in and type

javac HelloApplet.java

This will, if successful, generate a bytecode file named HelloApplet.class.

14 Chapter 1—Java Runtime Environment

Now you need to create a HTML file to execute the applet. Again, open a text editor and
create the following file:

<HTML>

<BODY>

<APPLET CODE=”HelloApplet.class” Width=250, Height=50>

</APPLET>

</BODY>

</HTML>

This should be saved in the same directory that contains the HelloApplet.class file, and
you may name it anything that has a .htm or .html extension. Save it as hello.html. Once
it is saved, open a Java-enabled browser (the latest Netscape or Internet Explorer should
work) and point it to the file that you just saved. It should open with the text “Hello
World” in the window.

J A V A C O M M E N T S

When programming, it will be useful to add comments to your code. Java supports three
types of comments; two will be recognizable to those familiar with C or C++, and the
third type is unique to Java.

The three types of comments are:

� Single-line comment //

� Multiline comment /* … */

� Javadoc comment /** … */

Sun Certification 15

The following code shows examples of all three comment types:

class HelloWorld

{

 //**

 This is a javadoc comment. It is a multiline commment unique to
Java. If you use the javadoc utility (which comes with Java),

 it will automatically create HTML-based documentation for you. The
online help that comes with the Sun SDK was created using javadoc
comments.

 */

 public static void main(String[] args)

 {

 System.out.println("Hello World!");

 // Two forward slashes indicate a single-line comment.

 // Notice that each line must begin with the

 // two forward slashes.

 /*

 This is a multiline comment. It is possible to have multiple lines
of code within this block.

 */

 }

}

The single-line and multiline comments will be used in this book.

S U N C E R T I F I C A T I O N

The goal of this course is to prepare the student for the Sun Certified Java Programmer
examination. The exam is administered at various independent testing centers. For more
information on the exam, go to http://java.sun.com/100%. The exam consists of 59
questions and lasts 90 minutes. Some of the questions have only one correct answer and
others require that multiple correct answers be selected from a list. There may also be
some short text answers.

16 Chapter 1—Java Runtime Environment

S U M M A R Y

Java is used primarily to create three types of programs: applications, applets, and servlets.
This chapter walked you through the creation of a simple application and a simple applet.
A Java program is written and saved as a text source file with a .java extension. The
program is converted into bytecode with a .class extension by the Java compiler. The
compiled bytecode can be executed using the Java interpreter. The following chapters will
cover the basic syntax of the Java programming language.

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is the command to compile a java file?

...

...

2. What is the command to execute a java file?

...

...

M A J O R T O P I C SM A J O R T O P I C S

2

Data Types, Variables and Operators

Objectives .. 18

Pre-Test Questions... 18

Introduction .. 19

Data Types... 19

Variables .. 20

Casting .. 22

Operators... 24

Precedence ... 27

Sun Certification ... 28

Summary ... 29

Post-Test Questions ... 30

18 Chapter 2—Data Types, Variables and Operators

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Use primitive data types.

� Declare variables.

� Distinguish between implicit and explicit casting.

� Determine if a variable is a local, instance, or class variable.

� Use the operators for primitive types.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What are the primative data types in Java and how many are there?

...

...

2. How would a variable named test be declared as type int and assigned the value 5?

...

...

3. Can a short variable be assigned to a long variable? Can the reverse happen?

...

...

4. What is the difference between using “=” and “==”?

...

...

Introduction 19

I N T R O D U C T I O N

This chapter focuses on the basic building blocks of the Java language, such as data types,
variables, and operators. A programmer cannot learn the advanced concepts of a
programming language without having a thorough understanding of the fundamental
topics discussed in this chapter.

D A T A T Y P E S

Java is considered a strongly typed language. To use a variable, the programmer must
declare the type of information that this variable can store. Java has eight data types that
are referred to as primitives (also known as elemental or simple types): byte,short,int,
long, float, double, char, and boolean. Java also has many predefined types that are
listed in the Java API, and the language allows the creation of user defined data types.
These topics are covered later in the text, and only the primitives are considered here. The
Java primitive data types are listed in Table 2-1.

Table 2-1: Primitive data types

Type Name Size Range
boolean 8 bits true or false

byte 8 bits -128 to 127 (-27 to 27-1)

char 16 bits 0 to 65.535

short 16 bits -32,768 to 32,767 (-215 to 215-1)

int 32 bits -2,147,483,648 to 2,147,483,647(-231 to 231-1)

float 32 bits ~-3.4 x 1038 to ~3.4 x 1038

long 64 bits ~-9.2 x 1015 to ~9.2 x 1015(-263 to 263-1)

double 64 bits ~-1.8 x 10308 to ~1.8 x 10308

20 Chapter 2—Data Types, Variables and Operators

V A R I A B L E S

Java supports three types of variables: local variables, instance variables, and class
variables. This section will discuss the placement and scope of variables within a Java
class. The following code shows the differences between variable types.

class MyClass

{

 // This is a comment

 double salary = 45678.00; // instance variable

 static int totalcount = 0; // class variable

 public static void main(String[] args)

 {

 char male = 'm'; // local variable

 }

}

Class and instance variables are defined outside of a method, while local variables are
defined inside a method. The scope of class and instance variables is global within the
class, however, the scope of a local variable is only within the block of code in which it is
defined. At this point, the only difference to note between class and instance variables is
that class variables must be preceded by the keyword static, while instance variables are
not.

Variables 21

Default variable values

All variables must be inititalized before they can be used. Some variables are automatically
initialized to default values by the compiler. Class variables and instance variables default
to the values listed in Table 2-2.

Local variables do not have default values, and must be initialized by the programmer.

Variable declaration and initialization

To declare a variable, Java requires a type and an identifier an initial value is optional.
Identifiers must begin with a letter and can contain letters, numbers, and the underscore
character (_). An identifier can be any length but must not contain any embedded spaces
or special characters. To declare an int that stores the value of 40, use the following
statement:

int age = 40;

In this example, int is the type, age is the identifier, and 40 is the initial value. By
convention variable names start with a lower-case letter. The previous statement could
also have been written as follows:

int age;

age = 40;

The number of bits contained in each Java primitive is platform independent. This
feature of the JVM is necessary to maintain consistency across platforms.

Table 2-2: Default values for class and instance variables

Data Type Default Value
byte, short, int, long 0

float, double 0.0

char '\u0000' (the null character)

boolean false

non-primitive types null

22 Chapter 2—Data Types, Variables and Operators

boolean variables have the value false or true. The values 0 and 1 are not used as in
other languages. For example, the following is a valid Java statement:

boolean isRunning = false;

However, the following statement will not compile because an int cannot be converted
to a boolean.

boolean isRunning = 0;

The char data type is not associated with the 8-bit ASCII table found in other languages,
but the 16-bit Unicode character set. Sixteen bits allows 65,536 possible characters to be
displayed, which is considered adequate for representing most characters in the majority
of written languages. With this approach, Java intends to be an international
programming language. Unicode characters are specified by their hexadecimal value
between '\u0000' and '\uFFFF'. English characters can be specified either by their
Unicode values, or within single quotes, such as 'A' or '7'.

NOTE: It is important to point out that the low 7-bits of a Unicode character are
identical to an ASCII character.

C A S T I N G

Casting is the process of converting values from one data type to another. Java allows
implicit casting to larger data types, but casting to smaller data types must be done
explicitly.

The following are valid implicit castings:

byte b = 50;

short s = b; // Valid because short is 16 bits

 // easily storing an 8-bit byte.

float f = 10.0F;

double d = f; // A 64-bit double has no problem

 // storing a 32-bit float.

Casting 23

The following would not compile because explicit casting is required:

int i = 100;

short s = i; // Will not compile!

short s = (short) i; // This explicit cast is needed.

The explicit casting will work, but be aware that a short has 16 bits and an int has
32 bits. The result of this cast is that the upper 16 bits of the int will be lost, possibly
changing the int’s value.

Other casting rules also apply. Conversion is not allowed between a boolean and another
data type. The cast from one of the floating-point types to one of the integer types must
be explicit even though both int and float contain 32 bits and both double and long
contain 64 bits. When one of these casts are made, the fractional part of the float will be
lost. The integer types can be implicitly cast to one of the floating-point types without
loss of data. Any implicit cast can be explicitly stated to improve readability, as follows:

byte b = 50;

short s = (short) b;

In general, casting rules follow an elegant order, as shown in Figure 2-1.

Figure 2-1: Casting rules chart

This chart demonstrates that a byte can be assigned to a short or float, but a double
cannot be assigned to a float, int, for byte without an explicit cast.

byte short int long float double

char

24 Chapter 2—Data Types, Variables and Operators

The char type holds a 16-bit number representing the Unicode value for a particular
character. The following code demonstrates the implications of this:

char c = 97;

System.out.println(c); // prints a lowercase 'a'

int i = 'a';

System.out.println(i); // prints the number 97

With objects, casting can only be accomplished from a class to its parent class. It is
important to note that the Java complier will not allow a cast from a parent class to any of
its children.

O P E R A T O R S

Java supports the standard set of arithmetic, bitwise, relational, and logical operators that
will be covered throughout this book.

Arithmetic operators

The modulus operator (%) can be used with for both integers and floating points. For
example:

int a = 24;

double b = 24.2;

System.out.println("a%10 = " + a%10) // would result in 4

System.out.println("b%10 = " + b%10) // would result in 4.2

Increment and decrement operators function as they do in C and C++. For example:

int a = 1;

a++; // a now equals 2. This is the same as a = a + 1.

a--; // a now equals 1 again, same as a = a - 1.

Operators 25

The assignment operators also work as they do in C and C++. For example:

int a = 1;

a+=10; // a now equals 11. The same as a = a + 10;

a-=5; // a equals 6. Same as a = a - 5

a*=2; // a = 12. Same as a = a * 2;

Relational operators

As in C and C++, comparison for equality is done with the double equal signs (==) as
opposed to a single equal sign (=). The single equal sign is used only for value assignment.
For example:

int a = 4; // Assigns the value of 4 to a.

if(a == 4) // This asks "does a equal 4?"

 // This would evaluate to true.

The following lists the complete set of relational operators.

== Equality

!= Not Equal

< Less Than

<= Less Than or Equal to

> Greater Than

>= Greater Than or Equal to

26 Chapter 2—Data Types, Variables and Operators

Logical operators

Logical expressions are used in conditional statements such as if and while loops. These
expressions must evaluate to a boolean value. In other languages, numeric expressions can
be substituted and evaluated; Java does not allow this.

Java supports short-circuit logical operators for the AND (&&) and OR (||) operators.
These allow the program to bypass evaluation of part of the expression when the value of
the entire expression is not needed. For example:

int a = 2;

int b = 2;

if(a == 1 && b == 2) // b == 2 would not be evaluated

 // because a == 1 is false.

if(a == 2 && b == 2) // Both expressions must be tested

 // to determine if the expression

 // is true.

if(a == 1 || b == 2) // Here, both expressions will be

 // evaluated because a == 1

 // is false.

if(a == 2 || b == 2) // This time only a == 2 is

 // evaluated because it is true and

 // sufficient to determine if the

 // expression is true.

if(a == 1 && ++b == 2) // Notice that because

 // the first condition

 // fails, b is never

 // incremented.

Precedence 27

TECH TIP:
Throughout this course, you will practice the material before it is implemented
in a final project. For this reason, make a file called Practice.java, or create a
new Practice file for each chapter. For example, the file for this chapter might
be called Practice2.java.

P R E C E D E N C E

The order in which operators are evaluated in an expression is known as precedence.
Associativity refers to the order in which the operands of a particular operator are read.
The following table lists the Java operators in order from lowest to highest precedence.

Table 2-3: Java operators from lowest to highest precedence

Operator Example Associativity
Assignment = *= /= %= += -= Right to left

Conditional ?: Right to left

Logical OR || Left or right

Logical AND && Left to right

Boolean (or bitwise)
OR

| Left to right

Boolean (or bitwise)
XOR

^ Left to right

Boolean (or bitwise)
AND

& Left to right

Equality == != Left to right

Relational < <= > >= instanceof Left to right

Shift (bitwise) << >> >>> Left to right

Multiplicative * / % Left to right

Unary ++ -- ! - (type) Right to left

Reference Operations . [] Left to right

28 Chapter 2—Data Types, Variables and Operators

S U N C E R T I F I C A T I O N

Java data types

In Java, each data type has a length and range of values defined by the language. These
values should be memorized before taking the Sun Certification exam. Java char values
are represented by Unicode values preceded by the designator \u. The range of all ASCII
characters (the character set used in the United States) is '\u0000' to '\u00ff'. The value
'\u0000' is the null character not the space character '\u0020'. Standard English
characters can be specified as their literal values within single quotation marks, such as
'A' or '7'.

Default initial values

Java instance and static variables have default initial values when they are declared. Local
variables do not have default initial values. The initial values are 0 or 0.0 for numeric
types, '\u0000' for chars, false for booleans, and null for all other types. Instance and
static variables will be discussed in greater detail in the next section of the course.

Summary 29

Operators

The bit-wise operators, which can be used to modify variables at the bit level, appear on
the test. The operators are right shift (>>), left shift (<<), and right shift not keeping the
sign bit (>>>). The point of emphasis here is on the difference between the >> and >>>
operators, which is demonstrated in the following program.

class BitShifter

{

 public static void main(String[] args)

 {

 int i = 0x80000000;

 int answer1, answer2;

 answer1 = i >> 3;

 answer2 = i >>> 3;

 System.out.println("initially: " + i);

 System.out.println(">> 3: " + answer1);

 System.out.println(">>> 3: " + answer2);

 }

}

The output of this program is as follows:

C:\Java>java BitShifter

initially: -2147483648

>> 3: -268435456

>>> 3: 268435456

S U M M A R Y

Java's primitive data types and their ranges were discussed in this chapter. The fixed
lengths of these data types is a feature that makes Java platform independent. Variables
were declared and the differences between local, instance, and class variables were
discussed. Also, implicit and explicit casting, and several operators were introduced. This
chapter showed that many standard operators used in other languages are supported in
Java.

30 Chapter 2—Data Types, Variables and Operators

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. How many bits are occupied by each data type?

...

...

2. What is the short circuit OR operator in Java?

...

...

3. What is the difference between a local variable and a class variable?

...

...

4. What is the output of

int a = 1;

int b = 2;

a += b;

b = a%2;

a--;

System.out.println(“a: “ + a);

System.out.println(“b; “ + b);

...

...

Post-Test Questions 31

5. What is the difference between a static variable and an instance variable?

...

...

32 Chapter 2—Data Types, Variables and Operators

M A J O R T O P I C SM A J O R T O P I C S

3

Control Statements

Objectives .. 34

Pre-Test Questions... 34

Introduction .. 34

Code Blocks... 35

Expressions .. 36

Conditional Statements ... 38

Iteration (Loop) Statements ... 42

Sun Certification ... 47

Summary ... 48

Post-Test questions .. 48

34 Chapter 3—Control Statements

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Explain the block structure of Java.

� Use expressions inside select and iteration statements.

� Use Java select statements (if/else and switch).

� Use Java iteration statements (while, do/while and for).

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is an if statement used for?

...

...

2. Why should the try, catch, finally construct be with exceptions?

...

...

I N T R O D U C T I O N

Control statements are one of Java’s most fundamental elements and are used in almost all
programs. A programmer must learn how to use them well. The if, else, while, and for
statements are used most often, but it is a good idea to have a working knowledge of all
the control statements.

Code Blocks 35

C O D E B L O C K S

Java uses braces ({,}), sometimes referred to as curly braces, to define the beginning and
end of a code block. A block is used to group the contents of a class or a method, and to
designate all conditional and iteration statements. Code blocks are also used for exception
handling, which will be discussed in a later section. Blocks can be used at any time to set
aside a piece of code. Java ignores white spaces between statements, so the placement of
the curly braces is a matter of style. Table 3-1 lists several styles.

Brace Style
class MyClass {
 // Many IDEs
 // default
 // to this
 // style.
}

void myMethod()
{
 // Considered
 // the
 // easiest to
 // read.
}

if(age >= 50)
 {
 // Classic
 // style.
 }

for(int i; i < 10; i++) {
 // Mixed
 // style,
 // not preferable.
 }

36 Chapter 3—Control Statements

E X P R E S S I O N S

An expression is a series of variables, operators, and method calls that evaluate to one
distinct value. All of the following are expressions:

int count = 0;

This expression assigns the value of zero to the variable count.
StringTokenizer st = new StringTokenizer(“string”);

This expression creates a new object of the type StringTokenizer.

count++;

This expression increments the value of count by one.

The most simple form of an expression is that of an assignment statement. This is when a
variable, method, or a static value assigns its value to another variable. An assignment
statement could have this form:

int count = counter.getCount();

One type of expression is the boolean expression. The boolean expression will be used
quite a bit in this chapter. A boolean expression evaluates to a boolean value, either true
or false. A boolean value is used to direct the behavior of a control flow statement. A
control flow statement allows a program to do one of two options based on a boolean
control value. A value may be generated either by placing true or false in the control
statement through a method with a boolean return type, or by the evaluation of a
comparison. The following chart lists the comparison operators and their definitions.

Table 3-2: Comparison operators

Operators Definition
< Strictly less than

> Strictly greater than

<= Less than or equal to

>= Greater than or equal to

!= Not equal to

& Logical AND

Expressions 37

Most of these operators function in a mathematical manner. They are used to compare
the numeric values of variables. The ! operator is the logical NOT operator. It is used to
switch between true and false and vice versa. For instance, !true is the equivalent to
false and !false is equivalent to true. The logical operators AND, short-circuit AND,
OR, and short-circuit OR are used to make logical decisions.

The following shows a sample boolean expression using the equality operator:

number == 100

In this case, the expression will evaluate to true only if the variable number equals 100. If
it equals anything else, the expression will evaluate to false. However, to “capture” this
value, it must be assigned to a variable. Consider the next example:

boolean trueOrFalse = (1 > 12) && (1 < 12);

In this case, the variable trueOrFalse will be assigned the value false. The unique thing
about this example is how it is evaluated. The && operator is the short-circuit logical
AND operator. Like the logical AND operator, it evaluates to true only if both side of
the expression are true. Thus, if the left hand side is false, the entire expression will end
up being false.The short-circuit part means that if the expression on the left hand side is
false, the expression short circuits, the right hand side is not tested, and the expression is
evaluated to false. The short circuit OR operator behaves similarly if the left hand side is
true.

&& Short circuit AND

| Logical OR

|| Short circuit OR

== Is equal to

Table 3-2: Comparison operators

Operators Definition

38 Chapter 3—Control Statements

C O N D I T I O N A L S T A T E M E N T S

Conditional statements are used to ask questions. The two types of conditional
statements are if statements and switch/case statements.

if statement

The if statement is used to execute a code block conditionally. It surrounds a code
block, and that block will only be entered when the condition in the if statement
evaluates to true. The following example should demonstrate this concept.

int gradeBen = 76;

int gradeAndrew = 100;

int gradeCassie = 93;

if(gradeCassie > gradeBen)

{

 System.out.println(“Cassie did better on the test than Ben.”);

}

if(gradeAndrew > gradeCassie)

{

 System.out.println(“Andrew did better on the test.”);

}

if((gradeAndrew == gradeCassie) || (gradeAndrew == gradeBen))

{

 System.out.println(“Looks like Andrew has been cheating!”);

}

The if statement will be used throughout the rest of this chapter. A solid understanding
of how the if statement works allows a programmer to implement complicated behavior
easily.

Conditional Statements 39

The if statement, which was just introduced, makes a choice between two options. The
syntax for the if statement is as follows:

if (boolean_expression1)

{

 // One or more lines of code.

}

else if (boolean_expression2) // OPTIONAL

{

 // Still more lines of code.

}

else // OPTIONAL

{

 // Yet more lines of code.

}

Following is an example of an if statement (with all the optional flourishes):

if (grade >= 90)

{

 System.out.println("You made an A!!!");

}

else if (grade >= 80)

{

 System.out.println("You made a B!");

}

else if (grade >= 70) // more than one “else if” can be used

{

 System.out.println("You made a C.");

}

else

{

 System.out.println("You should probably study more next time.");

}

40 Chapter 3—Control Statements

The construct can contain zero or more else portions. The else if portion is not
actually a seperate command, but an else block that contains an if statement. Most
programmers place the two statements on one line to make the program more readable.
The braces are not required if there is only one line of code for any block; however, these
are sometimes included for clarity. Please note that the boolean expression, which is
contained in parentheses, must be something that evaluates to true or false. An error
will occur if the condition is not a boolean expression.

TECH NOTE:
Remember that a boolean expression is always true or false, not 0 or 1 as in C
or Perl. Thus, a statement such as if (5-2) will fail and throw a compile time
error.

switch/case statement

The switch statement allows a choice from a number of options. It will test a number of
cases against a variable of type char, byte, short, or int. The following is the syntax for
the switch statement:

switch (variable)

{

 case value0:

 // block to execute

 break;

 case value1:

 // block to execute

 break;

 default:

 // block to execute

}

WARNING!
If the break is not present, the next case will also be executed. This allows
several case blocks to execute the same code. However, this can lead to problems
if the programmer is careless.

Conditional Statements 41

The break statement breaks out of the switch statement. Without the break, the
program would continue to execute the code block of the next case statement. A break
statement should normally be used in each case.

The default option should be the last option in a switch statement. If none of the cases
match, the default block is executed. This course will not use the braces in the switch
statement, although it is allowable. The following is an example of a switch statement:

int choice = 3;

switch(choice)

{

 case 1:

 System.out.println("You chose Menu Option #1");

 break;

 case 2:

 System.out.println("You chose Menu Option #2");

 break;

 case 3:

 System.out.println("You chose Menu Option #3");

 break;

 default:

 System.out.println("You chose an illegal number");

}

Multiple case lines without actions or breaks can be used to represent a range of values.

42 Chapter 3—Control Statements

I T E R A T I O N (L O O P) S T A T E M E N T S

Iteration or loop statements are used to set up and handle processes that must be
repeated. The three types of loops are while, do while, and for.

while loop (entry condition loop)

The while loop checks a condition before entering the loop, then executes the loop block
if the condition is true. The condition must be a boolean expression contained in
parentheses like the if statement. The syntax for the while loop is as follows:

while (boolean_expression)

{

 // loop block

}

The following is an example of a while loop:

int myNumber = 10;

while (myNumber >= 0)

{

 System.out.println(myNumber);

 myNumber--;

}

Note that this code will count down from 10 to 0, then terminate. If you want to
countdown to 1 then terminate, change the boolean expression in the while loop to
myNumber > 0.

The while loop can handle any situation where a loop is needed. However, sometimes a
do while or a for loop can make things easier for the programmer.

Iteration (Loop) Statements 43

do while loop (exit condition loop)

Because the condition is checked first in a while loop, it is possible that the loop may
never execute. This second iteration type ensures that the loop block executes at least
once by placing the condition at the end of the loop. The syntax for the do while loop is
as follows:

do

{

 // loop block

} while (boolean_expression);

for loop

The while loop and do while loop are useful for many situations, but you must control
the boolean condition, ensuring that the variables change and eventually make the
condition false. If you know how many times you want to iterate, the for loop is
probably the best choice. The syntax is as follows:

for (initial_condition; boolean_expression; iteration)

{

 // loop block

}

The following steps describe how the for loop works.

1. The initial condition statement (the first portion in parentheses) is executed.

2. The boolean expression (the second portion in parentheses) is tested to see if it is
true. If so, the body of the loop is executed, if it is false, the for loop is exited.

3. The iteration statement (the third portion in the parentheses) is executed. It
returns to Step 2 and continues until the loop is exited.

44 Chapter 3—Control Statements

Following is an example loop that counts from 1 to 10:

for (int count = 1; count <= 10; count++)

{

 System.out.println(count);

}

The iteration variable count can be declared outside the loop or declared inside the for
statement as above. In this example, the variable count would be out of scope and
unavailable after the loop ends. If the variable is declared before the loop, then it will be
available after the termination of the loop.

Nested loops (break and continue)

The break statement was introduced with the switch statement in order to keep multiple
cases from executing. You can prematurely end other control blocks such as a loop by
executing a break statement. Because you do not want the loop to end each time, the
break statement is placed inside a conditional statement (if). For example:

for (int countDown = 10; countDown >= 0; countDown--)

{

 System.out.println(countDown);

 if (countDown == 3)

 {

 System.out.println("ABORT");

 break;

 }

}

Iteration (Loop) Statements 45

This example will count down from 10 to 3, then print ABORT and end the program. To
skip one iteration of the loop, use the continue statement.

System.out.println("Leap years between 1896 and 1924");

for (int year = 1896; year <= 1924; year += 4)

{

 if ((year % 100) == 0)

 {

 continue;

 }

 System.out.println(year);

}

Because continue and break only work on the current loop, labels can be used to further
control the loop. Labels can be placed at the beginning of a loop, and you can continue
or break to the label. An example of how to use a label follows:

boolean found = false;

outer: for (int row = 0; row < 10; row++)

{

 inner: for (int col = 0; col < 10; col++)

 {

 // Some code which may change found to true

 if (found)

 {

 break outer; // Jumps to outer loop

 }

 }

}

TECH NOTE:
Label identifiers follow the same rules as for class or variable identifiers. Many
languages that use labels either capitalize their first initials or use all uppercase
letters. Most Java reference books use the lowercase style shown here. Whichever
style you choose, use it consistently.

46 Chapter 3—Control Statements

Exercise 3-1: Using while and for loops

In this exercise, you will use two different iteration statements to perform the same
operation, demonstrating that programming is often a matter of style. Continue with
your SectionOne class in your main() method.

1. Write a program that generates the script for a NASA countdown using a for loop.
The output should be:

10

9

8

7

6

5

4

3

2

1

LIFTOFF!

2. Repeat Step 1 using a while loop.

3. (Optional) Create an unusual countdown program using the modulus operator
such that the output reads:

10

8

6

4

2

0

LIFTOFF!

Sun Certification 47

4. (Optional) Modify Step 3 so that the output reads:

9

7

5

3

1

LIFTOFF!

5. (Optional) Create two integer variables, firstYear and lastYear. For any arbitrary
firstYear and lastYear, print out all the leap years that exist between the first
and last years. Remember that leap years are those years divisible by 4.

TECH TIP:
Remember that how you choose to use curly braces is a matter of style. What is
important is that you use them consistently so that others are better able to read
your code.

S U N C E R T I F I C A T I O N

The basic Java control structures (if, switch, for and while) are tested on the Sun
examination. Specifically, watch for a switch statement that does not contain break
statements for each condition. If the break statement is not encountered, the next
condition's block of code is also executed until the break is encountered or the switch
statement ends. The exam will also tests concerning the break and continue statements
in nested loops.

48 Chapter 3—Control Statements

S U M M A R Y

This chapter covered Java's block structure and how to create code blocks with curly
braces. You also learned to use conditional statements and iteration statements in your
code. As you will see throughout this course, Java contains constructions similar to those
in other programming languages.

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What data types can be included in a switch statement?

...

...

2. In a switch statement, is the break command optional?

...

...

3. What is the minimum number of times a do/while loop will iterate?

...

...

M A J O R T O P I C SM A J O R T O P I C S

4

Methods

Objectives .. 50

Pre-Test Questions... 50

Introduction .. 51

Methods... 51

Return Statement... 53

Calling a Method... 55

Parameters ... 57

Pass by Value.. 58

Overloading ... 60

Sun Certification ... 63

Summary ... 64

Post-Test Questions ... 64

50 Chapter 4—Methods

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Create and use static methods.

� Return a value from a method.

� Identify the method signature.

� Explain pass by value.

� Describe overloading methods.

� Determine scope of variables.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is an inner class?

...

...

2. How can command line arguments be accessed from inside a program?

...

...

Introduction 51

I N T R O D U C T I O N

Methods are one of the most basic concepts in Java programming. To be an effective Java
programmer, one must fully understand the functionality of Java methods. Methods are
the building blocks of Java classes and programs. In this section, we will explore the basics
of methods.

M E T H O D S

Other languages call them functions, procedures, or subroutines, but in Java we refer to
the executable parts of a class as methods. Class methods are a focus point in this section.
Instance methods will be discussed in the section on object-oriented programming.

A Java application is a free-standing program that can be executed from a command line.
The main method must be present in all Java applications. This is the starting point for all
applications, and flow of control within the program begins here. As with variables, a
method becomes a class method by the use of the keyword static. The general syntax for
a class method is as follows:

[accessKeyword] static returnType methodName

 ([parameterType parameterName, pType2 pName2])

{

 // body of method

}

The two top-most lines constitute the method declaration, where the top line contains
keywords denoting the characteristics of the method. The second line is the parameter
list, which states the type, number, and name of variables passed into the method by the
calling method. The line // body of method represents the method code. This is where
the actual functionality of the method would be implemented.

52 Chapter 4—Methods

The access keyword can be public, private, or protected. The special form of access called
package is the default if no access modifier is declared; however, access keywords should
always be used. For now, detailed discussion of the access keyword will be omitted.
Within the realm of instructional exercises, where security is not a major concern, public
may be used as the access keyword without fear of interfering with the functionality of
the code.

The return type can be any Java primitive data type, an object, or void. Void denotes
that the method has no return value. The return type indicates the type of value returned
or reported back to the calling method, and it is most often used in conjunction with the
assignment of a value to a variable in the calling method.

The method name follows the same naming rules as variables and will generally begin
with a lowercase letter. Because methods and variables are both contained inside classes,
they are called class members. As mentioned earlier, the main method must be present in
every Java application, since it is this method that the Java virtual machine searches for
when executing an application.

The parameter list is a comma-separated list of two-part descriptions. The first entry
states the data type of the parameter, which can be either a primitive data type or an
object. The second entry declares the name to be used when referencing the parameter
within the method. The parameter is a variable inside the method, and the parameter
name is the name used for reference.

Return Statement 53

R E T U R N S T A T E M E N T

If the return type is not void, then a return statement is required. The value returned
must be the same type as the return type listed in the method declaration. The following
code is a simple example of a method that determines whether the first int parameter
passed into the method is greater than or equal to the second int parameter. The method
will return a boolean with the value true if the first int is greater than or equal to the
second and false if it is not.

static boolean firstIntLarger (int tmpIntOne, int tmpIntTwo)

{

 boolean tmpResult;

 if (tmpIntOne >= tmpIntTwo)

 {

 tmpResult = true;

 }

 else

 {

 tmpResult = false;

 }

 return tmpResult;

}

The return statement directs the method to return the current value of its arguments to
the calling method. As a result, in the previous example, the current value of the local
boolean variable tmpResult is returned to the caller. This method might be used for a
decision as in the following code.

if(firstIntLarger(x, y))

54 Chapter 4—Methods

Methods with a return type other than void are most often used to assign a value to a
variable in the calling method. An example would be a block of code in the calling
method, such as:

int passedIntOne = 1;

int passedIntTwo = 2;

boolean returnedValue;

returnedValue = firstIntLarger(passedIntOne, passedIntTwo);

In this manner, the boolean variable returnedValue is assigned the value returned by the
called method. In this case, the value is false. The same principle would hold true for
other data types. Methods with a return type of void would be called without regard to a
return type, execute its code, and return flow of control to its caller when finished,
without an explicit return value.

It is important to note that the variable tmpResult is a local variable and will only exist
within the method integerLarger. This effect is referred to as the scope of the variable. It
is created within the method, and memory is allocated to hold its value. This memory is
returned to the system when the flow of control returns to the calling method. This
memory deallocation is referred to as garbage collection, and it will be covered in detail in
a later chapter. A variable with local scope is not recognized outside of its method. Its
value is returned to the calling method while the local variable itself ceases to exist.

TECH NOTE:
In this example, the first part of a parameter name is tmp, to denote its
temporary nature. The same idea can be used with local variables. Both
parameters and local variables go out of scope at the conclusion of the method.

It is also possible to use a return statement in a method with a void return type. In this
case, the return statement is used without an argument. This technique is most often
used in conjunction with a decision structure, such as if or switch. For example:

if(termination condition)

return;

else

alternative code;

Calling a Method 55

C A L L I N G A M E T H O D

Calling a method located inside the current class can be accomplished by stating the
name of the method followed by the parameters to be passed to the method. In the
following code, firstIntLarger is called by passing the two variables
firstIntegerNumber and secondIntegerNumber to it. In this case, the return value of the
method is used as the boolean value for the if decision statement.

int firstIntegerNumber = 42;

int secondIntegerNumber = 12;

if (firstIntLarger(firstIntegerNumber, secondIntegerNumber))

{

 System.out.println("the first integer is larger");

}

else

{

 System.out.println("the second integer is larger");

}

The method can also be invoked with numeric literals, such as:

integerLarger(42, 12)

Here, the compiler will recognize the two literals as ints and pass their value to the
parameters. Normally, the two integer variables firstIntegerNumber and
secondIntegerNumber would hold values assigned by a computation elsewhere in the
program.

56 Chapter 4—Methods

In addition, the method’s result can be assigned to a variable, since it returns a data type.
In the following code, the boolean variable larger is assigned the return value of the
method firstIntLarger.

int firstIntegerNumber = 42;

int secondIntegerNumber = 12;

boolean larger;

larger = firstIntLarger(firstIntegerNumber, secondIntegerNumber);

if (larger)

{

 System.out.println(“The first integer is larger.”);

}

else

{

 System.out.println("The second integer is larger");

}

In the event that the called method has a return type of void the method is called by
simply stating its name. For example, to call a method with return type void and an
empty parameter list named noRetValMeth, the line would read:

noRetValMeth();

In this manner, no return value is expected, and the called program simply performs its
function and then returns control to the calling method. This type of method is usually
used to change values of member variables. Because member variables have scope
throughout the class, they do not have to be passed as parameters.

Methods in classes other than that of the calling method may be called under certain
circumstances using the dot (.) operator. However, these techniques will be discussed
later.

Parameters 57

Another concept of calling methods is flow of control. When a method is called within a
block of code, execution of the code in the calling method is suspended, and the flow of
control is transferred to the called method. The flow of control then executes each
statement in order within the called method until a terminating condition is met. A
terminating condition can be a return statement, the end of the code within the method,
or a statement that terminates the program, such as System.exit(). In the first two cases,
flow of control is returned to the calling method to resume executing statements at the
point immediately after the outside method was called. Remember: it is common to call a
method from within a called method. In that case, flow of control is transferred to the
third method until terminating conditions are met. It is therefore possible to develop
complicated control structures within a program.

P A R A M E T E R S

Each parameter has a type and a name, and a method may have zero or more parameters.
The parameters are stated in a parenthesized, comma separated list following the stated
name of the method. Parameters are then used in a manner similar to variables within the
method. Once flow of control is passed to the method, the method’s parameters become
variables of that method. The type of a parameter can be either a primitive or an object.
Although objects as parameters have already been shown in the main() method, objects as
data types will be discussed in later chapters. The parameter (String[] args) is an array
of type String, a predefined class. The brackets [] indicate an array of String objects.
Arrays will be discussed in a later chapter. The name of the parameter is args. It will be
referred to by this name throughout the main method.

We will now examine the following method declaration in more detail.

static boolean firstIntLarger (int tmpIntOne, int tmpIntTwo)

In this case, there are two parameters passed to the method firstIntegerLarger. The
type of both is int. The names are tmpIntOne and tmpIntTwo respectively. The parameters
are referred to by these names throughout the method.

58 Chapter 4—Methods

It also acceptable for a method to expect an empty parameter list. In this case, the
parameter list would be a set of empty parentheses, as in the following:

public void noRetValMeth();

The name(s) used for the parameters by the calling method need not be the same name(s)
used by the called method. Also the parameter type is not included in the parameter list
used by the calling method; only the names of the passed parameters are included. In fact,
the parameter list used by the calling method would be more correctly referred to as the
argument list. In all cases, however, the arguments passed to the called method must
match in type and number the parameters listed in the method declaration.

P A S S B Y V A L U E

Pass by value and pass by reference refer to the way in which the passed parameters are
handled by the called method. In Java, unlike other object oriented languages such as
C++, there is no pointer data type, reference operator, or other means to manipulate
whether parameters are passed by value of by reference. For this reason, a clear
understanding of the parameter rules in Java is essential. Fortunately, the rules are simple;
primitive, built-in, data types are passed by value. In other words, the value of the variable
is passed but not the actual variable. With pass by value, any changes made to the
parameters inside the called method will not change the value of the variables used as
arguments.

As an illustration, consider this simple method that increments the integer parameter by
one:

static void incrementInteger (int tmpInt)

{

 tmpInt++;

}

Pass by Value 59

The call to this method is:

int myInteger = 42;

incrementInteger(myInteger);

System.out.println(myInteger);

The main program sets up memory as follows:

Figure 4-1

When the method is called, a temporary memory variable is set up for the duration of the
method. The value of myInteger is placed in this temporary location:

Figure 4-2

When the value of tmpInt is changed, it does not affect the value of the original variable
myInteger. Therefore, what is printed after the call is 42, not 43. If the value of tmpInt is
printed after the increment the 43 would be printed. However, this value is lost when the
method finishes execution. This is referred to as pass by value, because the method only
has a copy of the original value. In the next chapter, we will discuss pass by reference and
what this means for non-primitive data types.

42

myInteger

42

tmpInt

60 Chapter 4—Methods

O V E R L O A D I N G

There are times that call for performing the same type of calculations on different types of
data. In this situation, the same method name is used more than once. This practice is
known as overloading and is acceptable in Java. To accomplish this, the methods must
have different signatures. The method signature consists of the method name and
parameter list. The return type is not part of the method signature. For example, to create
several methods that added numbers together, the following methods would all be
acceptable even though they are defined in the same class:

static int addNumbers (int i1, int i2)

{

 return i1 + i2;

}

static int addNumbers (double d1, int i2)

{

 return (int)d1 + i2;

}

static int addNumbers (int i1, double d2)

{

 return i1 + (int)d2;

}

static int addNumbers (int i1, int i2, int i3)

{

 return i1 + i2 + i3;

}

Overloading 61

The Java compiler can determine which of the methods to call based on the type and
number of parameters. The following methods could not be added to the class shown
previously because they only differ by return type from one of the other methods.

static double addNumbers (int i1, int i2) { }

static boolean addNumbers (double d1, int i2) { }

static void addNumbers (int i1, int i2, int i3) { }

If two methods only differ by return type, the class will not compile. Two methods such
as this would be referred to as ambiguous. Overloading of methods will become very
important in object-oriented programming, which will be discussed in later sections.

62 Chapter 4—Methods

Exercise 4-1: Writing methods

In this exercise, you will practice writing methods. Meaningful implementation of
methods will improve the readability and manageability of your code. Many methods will
receive parameters and values.

Continue with your SectionOne class in your main() method.

1. After entering the following code in your main() method, implement the three
methods to make your code function correctly. Three overloaded class methods
must be defined for your code to work.

public static void main (String[] args)

{

 // code from the previous exercises

 int i1 = 11;

 int i2 = 5;

 int iTotal = addNumbers(i1, i2);// Method 1

 System.out.println("iTotal: " + iTotal);

 double d1 = 12.0;

 double d2 = 3.9;

 double dTotal = addNumbers(d1, d2);// Method 2

 System.out.println("dTotal: " + dTotal);

 double mixedTotal = addNumbers(i1,d1); // Method 3

 System.out.println("mixedTotal: " + mixedTotal);

}

2. (Optional) Create a fourth method called orderedOutput() that takes the three
totals as parameters (iTotal, dTotal, mixedTotal) and displays them from greatest
to least.

Sun Certification 63

TECH NOTE:
It is good practice to choose a method name that is descriptive of the action
being performed. The Java convention is to begin method names with a
lowercase letter, then identify words by capitalizing the first letter of each
subsequent word. For example, a method meant to set the age of a person might
be named int setAge(int tmpAge) as opposed to "setage" or "SetAge".

S U N C E R T I F I C A T I O N

You can expect a question asking you to identify the problem with a piece of code. One of
the problems you may see is an improperly overloaded method. Questions exist where the
number and type of parameters are the same as another method, but the names of the
parameters are different. Questions exist that are ambiguous because of return type. On
the test, local variables are used and are often not initialized. Although methods are not
specifically tested on the exam, they constitute a basic piece of knowledge that you are
expected to understand. Pay close attention to the parameter list, the argument list, and
the variables both in the calling method and in the called method. One last thing to
watch for is pass by value. Understand when the values of a variable are actually changed
and when the values are not altered.

64 Chapter 4—Methods

S U M M A R Y

Methods are one of the defining features of object-oriented programming languages.
Overloading of methods allows the same name to perform different functions depending
on the data used. Member methods and member variables will form the basic building
blocks of objects. Knowing how these methods communicate is essential to
understanding the object oriented paradigm and Java.

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is the base value of the index of the command line parameter array?

...

...

2. How is a method overloaded in Java?

...

...

3. Variables declared inside a method have what scope? A) Global B) Local C) static
D) Instance?

...

...

M A J O R T O P I C SM A J O R T O P I C S

5

Arrays

Objectives .. 66

Pre-Test Questions... 66

Introduction .. 67

What Is an Array? .. 67

Initializing an Array ... 68

Using an Array... 70

Passing an Array to a Method .. 74

Methods with an Array Return Type.............................. 75

Garbage Collection .. 76

Command Line Parameters.. 78

Graduating Task #1: Creating a binary search................ 79

Sun Certification ... 81

Summary ... 83

Post-Test Questions ... 83

66 Chapter 5—Arrays

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Declare and initialize an array.

� Allocate space for a new array.

� Describe array indexing.

� Use the length property.

� Discuss Java's garbage collection model.

� Retrieve command line parameters.

� Discuss how arrays are effectively passed by reference.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is an array?

...

...

2. How do you declare an integer array with ten elements?

...

...

3. Is it possible to take an element of an integer array and assign the element to a
variable of type long?

...

...

Introduction 67

I N T R O D U C T I O N

Many times a programmer will have the need to operate on many similar elements which
can be logically grouped together. Perhaps he or she normally has to perform the same
operation on all of these elements. In this case he should use an array to hold this data.

Stop now and view the following video presentation on the Interactive
Learning CD-ROM (jCert):

Java Programming Fundamentals
Java Array

W H A T I S A N A R R A Y ?

Arrays are our first introduction to . An array is a linear group of items of the same type.
For instance, an array could be a group of integers or it could be a group of floating point
numbers, but an array cannot be a mixture of the two. The way that an array is declared
illustrates this property.

int[] myarray = new int[10];

The square braces here inform the compiler that this is an array of integers and not
simply an integer. In this declaration we are telling the compiler to create an array of
integers called myarray. As with a class or instance variable, you can give the variable an
initial value or declare its value later. The variable that stores the array can be reused to
store a new array of integers later.

You may be wondering what an array is if it is not a primitive data type. An array is
actually a form of an object. An object is essentially any non primitive data item in Java.
Actually, the idea behind objects is a little more complex than that, and will be covered
more fully in a later chapter. For now, it is only important to realize that arrays behave
differently than primitive data types.

68 Chapter 5—Arrays

I N I T I A L I Z I N G A N A R R A Y

Arrays can either have all of their elements initialized at the time of declaration or the
elements can be individually initialized after declaration. The following is an example of
an array having all of its elements initialized at the time of declaration.

int[] myIntArray = {1, 2, 3, 4, 5};

An array in Java is an object. For this example, you can think of myIntArray as acting like
a reference (the value is the memory location of the data) to the data structure. A
reference is similar to a pointer in C/C++, but you cannot perform pointer arithmetic on
a reference. Instead, you can access individual members of the array by using the index
(which always starts at 0). To change the value of the fourth element in the array, you
would use the following code:

myIntArray[3] = 42;

TECH NOTE:
Although Java has references, pointer arithmetic is strictly forbidden. The only
way to access information from an array is to reference the index.

An array can also be initialized by using the new keyword like

int[] myIntArray = new int[5];

Note that when you create an array with the new keyword, the value of each element is
automatically initialized to the default value of the array’s data type. Also, at this time it is
incorrect to try to initialize the elements of the array using the curly brackets, such as

myIntArray = {1, 2, 3, 4, 5};

This type of initialization can only occur at the time of declaration.

Array instantiation in Java is dynamic. Since the size of the array is bound at run time not
compile time, an array need not be instantiated when it is declared. This means that you
could declare an array with a statement such as,

int[] theArray;

Initializing an Array 69

Then perform some other operations, such as obtaining an integer value from a
command line and storing it into a value named numOfItems. The previously declared
array could then be instantiated with the new keyword using this value.

theArray = new int[numOfItems]

If an array is created with the new keyword then the value of the elements must be set
individually. For instance

myIntArray[3] = 5;

would correctly set the fourth element of myIntArray to the value of 5. More commonly,
the elements may be using a looping operation similar to

for (int i = 0; i < myIntArray.length; i++)

{

 myIntArray[i] = i;

}

Here, a for loop is used to initialize the elements of the array. In this looping operation,
the termination condition uses the length property of Java arrays. The length property
contains the length of an array. An important thing to remember is that Java arrays are
zero-indexed, so the index of the last element of the array equals the length minus one.
Length is not the only special property associated with an array.

70 Chapter 5—Arrays

U S I N G A N A R R A Y

Suppose you want to copy all of the elements from one array to another. In Java, arrays
can be copied like an integer or floating point number. For instance,

int[] small = {1, 2, 3};

int[] big = small;

assigns the element values of small to the newly created array big, which will also be
instantiated to hold three elements. This type of an array copy does not behave exactly
like it would with primitives. Instead of creating a new array with separate values that
were equal to the values in small, big becomes another reference to the values in small.
Thus, both small and big now point to the same data. So, if we change something in one
then it is effectively changed in the other.

big[2] = 5;

would mean that small[2] equals 5 as well. Java does, however, have a utility for copying
elements from one array to another array that does not point to the same memory
location. This utility is called arraycopy and it is located in the System class. The call to
arraycopy is implemented like

System.arraycopy(from_array_name, from_array_element,
to_array_name, to_array_element, number of elements to copy)

where from_array_name and to_array_name are the names of the array’s being copied
from and to, and were from_array_element and to_array_element are the array element
positions from which copying begins. Remember that an array index begins at element 0,
and the number_of_elements is the number of elements to copy. This is best explained
with an example.

int[] odd = {1, 3, 5, 7, 9};

int[] even = {2, 4, 6, 8, 10};

Using an Array 71

This will set up array elements that can be pictured like

Figrure 5-1: Array elements

Now when System.arraycopy is called,

System.arraycopy(odd, 1, even, 1, 3);

we will change the elements of array even to (2, 3, 5, 7, 10). Notice that elements even[1]
through even[3] have been changed to the elements odd[1] through odd[3], and that
elements even[0] and even[4] have not been changed at all.

Figure 5-2: Array elements

This also brings up an important point. Copying from one array to another will not
insert elements into an array because an array’s size cannot change. Instead they simply
overwrite any existing element values in the array being copied to.

72 Chapter 5—Arrays

Other array utilities can be found in java.util.Arrays class and they include a sorting
function, a binary search function, a fill function, and an equals function. To use these
functions you need to import the java.utils.Array class. The easiest way to do this is to
import the entire utils package.

import java.utils.*;

The following chart illustrates some of the method declarations used for these functions,
as well as, the method declaration for the arraycopy method in the System class.

Variations of these methods with different parameters also exist.

Table 5-1: Method declaration

java.lang.System
static void arraycopy(from_array_name, from_array_element, to_array_name,
to_array_element, number of elements to copy)

java.util.Arrays

static void sort(array_name)

static int binarySearch(sorted_array_name, value of same data type as sorted_array_name)

static void fill(array_name, value of same data type as array_name)

static boolean equals(array_name, object)

Using an Array 73

Multidimensional Arrays

Java also supports multidimensional arrays. Multidimensional arrays are declared as
follows

int[][] myarray = new int[i][j]

where i and j are the row size and column size. Any number of dimensions may be
declared in this fashion. When you declare a multidimensional array in Java, it is actually
an array of arrays. So in reality Java does not have multidimensional arrays, but instead
fakes this by creating an array of arrays. That is, the elements of the first array are arrays
and the elements of the second array are ints. A four by four array is illustrated below.

Figure 5-3: Four by four array

Each element of the first dimension of the array is actually a 4 element array. These arrays
are the second dimension and their elements contain the actual data values. Each element
of those arrays may be indexed by referencing theArray[row][column].

74 Chapter 5—Arrays

P A S S I N G A N A R R A Y T O A M E T H O D

Arrays can be passed as arguments to methods. Arrays may be treated as if they were
passed in a call-by-reference manner. Thus, their element values can be changed by the
method. The following segment of code shows an array being passed to a method.

class test

{

 public static void print(int[] array)

 {

 for(int i= 0; i < array.length; i++)

 System.out.println(array[i]);

 }

 public static void main(String [] args)

 {

 int[] myarray = {1, 2, 3, 4, 5};

 print(myarray);

 }

}

In the previous chapter, it was explained that all parameters for methods were passed-by-
value, but we just said that you could treat arrays as if they were passed-by-reference. This
works because when you pass an array into a method, the method obtains a copy of the
array reference. Recall that a reference contains information about where in memory the
array is located. So, although the method has a copy of the reference, the method is still
able to make changes to the arrays that persist after the method returns. Also, because
only the reference is being copied and not the entire array, only minimal additional
memory must be used. This feature gives Java the effect of all non-primitive types being
passed by reference, even though the mechanism is still pass by value. Thus the same
behavior occurs with all objects.

Methods with an Array Return Type 75

TECH TIP:
You may find it helpful to add the suffix Array or Ary to your array variables.
Although not required or even mentioned in many style guides, this practice
may help you initially identify what type of information is stored in a variable.
Some authors recommend using a pluralized variable name to denote a
collection of items.

M E T H O D S W I T H A N A R R A Y R E T U R N T Y P E

Methods can also be declared with an arrays as their return type. The below code
illustrates this idea.

class test3

{

 public static int[] reverse(int[] array)

 {

 int[] reverse = new int[array.length];

 int count = array.length;

 for (int i=0; i < array.length; i++)

 {

 reverse[count-1] = array[i];

 count--;

 }

76 Chapter 5—Arrays

 return reverse;

 }

 public static void main(String[] args)

 {

 int[] myarray = {1, 2, 3, 4, 5};

 for (int i= 0; i < myarray.length; i++)

 System.out.println(myarray[i]);

 int[] myarray2 = reverse(myarray);

 System.out.println();

 for (int i= 0; i < myarray2.length; i++)

 System.out.println(myarray2[i]);

 }

}

Notice in the method declaration

public static int[] reverse(int[] array) {

that the return type is int[]. This method is also accepting an array named array as a
parameter.

G A R B A G E C O L L E C T I O N

When you create an array with the new keyword, you are allocating as much space in
memory as necessary to store the number of elements in the array. You may wonder what
happens when you are no longer using this space. Using the integer array declared
previously,

int[] myIntArray = new int[10];

creates an array with space for ten integers. Now, reuse the variable myIntArray to create a
three-element array:

myIntArray = new int[3];

Garbage Collection 77

This results in the following memory:

Figure 5-4

C and C++ programmers will probably see this as a memory leak. The old array now has
nothing pointing to it. This data cannot be accessed. When this condition occurs, the
JVM marks this object for eventual garbage collection. Garbage collection does not need
to be explicitly called by the programmer; although, it may not occur immediately.

78 Chapter 5—Arrays

You can prevent the old array from becoming eligible for garbage collection by creating a
reference or pointer to it before you create the three-element array:

int[] secondArray = myIntArray;

C O M M A N D L I N E P A R A M E T E R S

If you think about it, you have seen the array notation before. The main() method must
always have the following method signature:

public static void main (String[] args)

The array args (or any arbitrary name you choose to give it) will contain a group of
Strings. These Strings come from the command line:

java Practice String1 String2

As with other data types, you can access individual elements of this array with the bracket
notation. For example, the first String, String1, would be contained in args[0], the second
in args[1], and so forth. You can also test for the existence of command line parameters by
testing the length property of the args array. You will learn more about manipulating
Strings in the next chapter.

TECH NOTE:
Command line parameters are always String type data. It is necessary to use
special String methods in order to convert these to chars, ints, doubles, and so
forth. These will be discussed in later chapter. The String array may be defined
as String[] args or String args[], this is true of all arrays. The common syntax
is String[] args.

Graduating Task #1: Creating a binary search 79

Exercise 5-1: Using arrays

In this exercise, you will create a 26-element array to store the characters of the English
alphabet. Continue with your SectionOne class in your main() method.

1. Declare an array that can store 26 characters.

2. Write a for loop that populates each element of the array with a character of the
alphabet (lowercase).

HINT: Clever uses of casting will facilitate this.

3. Write a second for loop that prints the contents of the array created in Step 2.

4. (Optional) Many ways exist to populate the array with the characters of the
alphabet, some more elegant than others. Be sure to experiment with various
possibilities. For example, consider using double indexes in your for loop for a
clever use of syntax.

G R A D U A T I N G T A S K # 1 : C R E A T I N G A B I N A R Y S E A R C H

We have discussed the language fundamentals of Java from the primitive data types to
methods and arrays. In this exercise, you will incorporate all you have learned in this
section to write a binary search algorithm.

1. Create a program that will perform a binary search. The binary search will find an
element from an ordered list. It uses the same process you might use to find an
address in a phone book: look in the middle, then determine whether to look in
the first half or last half of the book, and go to the middle of that half.

Although, this course does not discuss algorithms, a quick look at the usefulness of
this procedure is in order. If you are looking through a list of 1,000,000 items
using a sequential algorithm (that is, looking at each item in turn until you find
the correct one), you will (on average) need to check half the items in the list—
500,000 items. With the binary search algorithm on a sorted list, the maximum
number of items to be checked is equal to the integer greater than or equal to
log2(1,000,000), which in this example is only 20.

80 Chapter 5—Arrays

2. To make this algorithm work, use a sorted array of characters to search through
and these other four variables. They are not initialized; initialization is your
responsibility.

char[] searchArray = // A sorted array of characters.

int high = // Hint: Use a property of arrays.

int low =

int mid = // Average the high and low.

 // Perhaps a method to do this?

boolean foundit =

char searchFor = // The character you are looking for.

3. Write code for the remainder of the binary search. Following is some pseudo code
for the algorithm:

set low to 0

set high to the length of the searchArray - 1

find the middle with your method

while the solution has not been found

 if the searchArray[middle] is equal to the searchFor char

 print out a message of success

 quit the loop

 if the searchFor char is less than searchArray[middle]

 print out a message that the solution is less

 set the high to the middle

 compute a new middle

low remains the same

 else

 print out a message that the solution is greater

 set the low to the middle

 compute a new middle

high remains the same

repeat the loop looking for a solution

print out the index of the solution

Sun Certification 81

4. (Optional) Write code that enables this program to function for other data types
(integers, doubles).

5. (Optional) Guarantee that the end values work. If not, correct them.

6. (Optional) What happens if the character is not found in the array?

S U N C E R T I F I C A T I O N

Array allocation

Please note that the array initialization with the curly braces can be invoked only when
the array is declared, and not at any other point:

int[] myAry = {1,2,3};

You should also note that the square braces must be empty in the declaration. They can
have a number of elements if the new keyword is invoked:

int[] myAry = new int[3];

82 Chapter 5—Arrays

Automatic garbage collection

You can expect a question on the exam similar to the following example. You should
know when an object no longer has any references to it and is, therefore, eligible for
garbage collection. Please note that garbage collection does not necessarily occur at the
earliest opportunity. In fact, for the small programs of this chapter, may never happen at
all. The garbage collection facility simply knows how to recover memory, if necessary.
The garbage collection may be invoked by the programmer, but this is usually not
necessary due to automatic garbage collection.

a. class Test

b. {

c. static int[] myIntAry = {1, 2, 3, 4, 5};

d. public static void main(String[] args)

e. {

f. myIntAry[3] = 42;

g. myIntAry = new int[10];

h. for (int ind = 0; ind < myIntAry.length; ind++)

i. {

j. myIntAry[ind] = ind * 2;

k. }

}

}

Command line parameters

One of the questions you can expect to see on the Sun exam involves identification of
command line parameters. Be aware that the length property can be used to determine
whether any command line parameters have been entered. Unlike in C/C++, the name of
the class is not the first element.

Summary 83

S U M M A R Y

Arrays provide you with an introduction to objects. Arrays are a feature of most
programming languages. In the next chapter, you will use the language features of Java to
work with object-oriented programs.

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. Using the command below, how do you access the word fun and assign it to the
String word?

java TestProgram This program is fun

...

...

2. Select all the keywords

A. True

B. false

C. new

D. bool

E. serialized

3. How do you populate an array where the elements are sequential?

...

...

84 Chapter 5—Arrays

M A J O R T O P I C SM A J O R T O P I C S

6

Classes and Objects

Objectives .. 86

Pre-Test Questions... 86

Introduction .. 87

Object-Oriented Programming...................................... 87

What Is a Class?... 88

What Is an Object? .. 89

Instance and Class Members.. 89

Abstraction .. 95

Object References .. 96

Sun Certification ... 99

Summary ... 100

Post-Test Questions ... 101

86 Chapter 6—Classes and Objects

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Identify the parts of an object.

� Create object references.

� Create and use instance members.

� Identify the differences between instance and class members.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is a class?

...

...

2. What is an object?

...

...

3. What is a method?

...

...

Introduction 87

I N T R O D U C T I O N

Object-orientation is a software-programming paradigm that helps programmers develop
efficient, error-free, reusable components. Object-orientation is based on principles of
data abstraction, information hiding, inheritance, and polymorphism. The fundamental
building block for all object-oriented designs is the class and its associated object. This
section will examine the basics of classes and objects in the Java programming language.

Stop now and view the following video presentation on the Interactive
Learning CD-ROM (jCert):

Java Programming Fundamentals
Subclasses

O B J E C T - O R I E N T E D P R O G R A M M I N G

Object-oriented programming refers to the building of blueprint designs called classes,
and the creation of these classes into objects that can communicate with each other. Each
object contains data elements (variables), and the communication occurs through
method calls from one object to another. In this section, we will discuss some of the
principles of object-oriented programming and how Java implements those principles.
You will learn about inheritance, abstraction, encapsulation, and polymorphism.

88 Chapter 6—Classes and Objects

W H A T I S A C L A S S ?

Java code is contained in either a class or an interface. Classes will be discussed here in
greater depth.

Before the advent of object-oriented programming languages, programmers used
structured programming languages such as C and COBOL. Software developers with
experience in these languages think of data, and the code that operates on data, as distinct
entities.

In a C program, all the data used to define an employee might be stored in a struct that
combines multiple simpler data types, such as a character array (to hold the employee's
name) and an integer value (to hold his or her annual salary), into a single data type, and
employee.

Object-oriented languages such as Java take this idea one step further by encapsulating
both the data and code. In this way, a class stores both the data that defines an employee,
such as an integer value to hold his annual salary, and methods that operate on this data,
such as a method that gives the employee a 5-percent raise. In this way, a class may act as
a blueprint for building an employee. It sets the rules and the dimensions, but it does not
actually provide the concrete building.

What Is an Object? 89

W H A T I S A N O B J E C T ?

If a class is a blueprint, then an object is the instantiation or realization of this blueprint.
Imagine that you have the blueprint for a house (your class). You cannot live in a
blueprint. Therefore, you need to build something from this blueprint in order to live in
your house. In object-oriented terminology, you instantiate the house class to create a
house object. In other words, an instance of a house object is created by instantiating the
house class. When a class is instantiated, memory is allocated to hold the data that will
define the object, and these values are initialized.

To instantiate an object with Java, use the new keyword. For example, if you have created
a class called House, you can instantiate it as follows:

House myHouse = new House();

This code is more complex than it appears. For now, it is important to understand that
you must instantiate an object using the new keyword to create a functional object from
the class. Once you have an instance of the class, you can work with its instance
members.

I N S T A N C E A N D C L A S S M E M B E R S

The variables and methods that compose a class are its members. Members can be divided
into two groups: class members and instance members.

Class members will always have the modifier static in front of them. For example:

static int age = 30; // a class variable.

The same variable defined as an instance variable would be:

int age = 30; // an instance variable.

The following sections describe the difference between class members and instance
members.

90 Chapter 6—Classes and Objects

Instance members

Although, you have already worked with class members in Section I, instance members
will be discussed first because they are more commonly used. Using class members is the
exception in Java; using instance members is more common.

For example, to create a class structure that may represent the structure of a hospital or
other medical organization, you will begin with a class called Employee. An employee has
several characteristics that you can represent as variables, such as name, salary, and
sickDays. You will also create a method that will print all the information about each
Employee. This method consists of four println() statements that print the values of
instance variables. Your Employee class can be implemented as follows:

class Employee

{

 // Instance Variables

 String name; // person's name

 double salary; // salary in dollars

 int sickDays; // allotted sick days

 // Instance Method

 void printAll()

 {

 System.out.println("Name: " + name);

 System.out.println("Salary: " + salary);

 System.out.println("Sick Days: " + sickDays);

 }

}

Instance and Class Members 91

You will create another class that contains your main() method and you will create objects
(instances of Employee class). Create two variables: sam and rachael. Each of these will be
an object of type Employee. After creating the Employee type variables, create an Employee
object with the new keyword. Like primitive variables, a value can be assigned either when
the variable is declared or later in the code.

class Main

{

 public static void main(String[] args)

 {

 Employee sam = new Employee();

 Employee rachael; // Instantiating a class

 rachael = new Employee(); // may be done on two lines.

 }

}

TECH NOTE:
You have come across an essential point in distinguishing instances from classes.
In this code, you instantiated the Employee class twice in order to obtain
rachael and sam objects. Although, rachael and sam are both instances of
Employee, each has its own copy in memory. Therefore, the sickDays instance
variable in rachael is completely independent of the sickDays instance
variable in sam. We will later show that this is not the case with class members.

92 Chapter 6—Classes and Objects

Accessing instance members

You can assign or reference the instance members by using dot notation (i.e., stating the
name of the object, followed by a dot, followed by the member name). You will add
names and number of sick days for sam and rachael, then print the results. You will print
the instance variables from the main() method first, then use the printAll() method.

class Main

{

 public static void main(String[] args)

 {

 Employee sam = new Employee();

 Employee rachael;

 rachael = new Employee();

 sam.name = "Sam";

 sam.sickDays = 8;

 rachael.name = "Rachael";

 rachael.salary = 32000;

 rachael.sickDays = 5;

 // Print out sam's instance variables first.

 System.out.println(sam.name + " has " +

 sam.sickDays + " sick days accrued.");

 // Now print out rachael's information using printAll()

 rachael.printAll();

 }

}

Notice the values for the uninitialized instance variables in rachael. All instance variables
initialize to 0 or 0.0 for numeric types, false for boolean types, '\u0000' for char types,
and null for all non-primitive types. Each object (rachael and sam) has its own set of
values for the instance variables. The object reference determines which instance variables
are referenced.

Instance and Class Members 93

When class members are discussed, you will see many similarities, but the differences are
very important. The greatest differences between class and instance members will be
apparent when you run an example.

Class members

Class members can function quite differently from instance members. First, some
syntactical concerns must be noted.

� Class members (variables and methods) are prefaced with the keyword static.

� Class methods can access only class members, but instance methods can access
either class or instance variables. Therefore, if you are in a static method, you can
only have access to other static methods or variables.

� If you want to access a class member from another class, you may use either the
class name or the object name.

TECH NOTE:
Class members maintain only one copy in memory. Therefore, even though you
may have instantiated many instances of a class, each member that is declared
as static will be shared across all instances of that class. This is similar to the
concept of global variables, but the word "global" is not acceptable in OO
concepts.

Accessing class members

An excellent example for working with class members is the Math class in the Java 2 API.
The Math class is a collection of utility methods such as the sin() method, which returns
the sine of an angle. Because the sin() method does not need to access any instance
member variables in the Math class to operate, sin() is defined as a static method, or a
class member method. In this way, the Math class does not have to instantiated to make
use of the Math.sin() method:

double mySin = Math.sin(3.14);// By accessing the Math class directly

TECH NOTE:
You do not have to instantiate the Math class to use its member methods. You
can reference it directly using the name of the class.

94 Chapter 6—Classes and Objects

An effective route is to use class variables to count the number of times a class has been
instantiated. For example, if you want to add an employeeNumber to the instances of
Employee, create a class variable.

class Employee

{

 // class variable

 static int numberOfEmployees = 0;

 // instance variables

 int employeeNumber;

 String name;

 double height;

 int weight;

 int age;

 double salary;

 int sickDays;

 void printAll()

 {

 System.out.println("ID: " + employeeNumber);

 System.out.println("Name: " + name);

 System.out.println("Height: " + height);

 System.out.println("Weight: " + weight);

 System.out.println("Age: " + age);

 System.out.println("Salary: " + salary);

 System.out.println("Sick days: " + sickDays);

 }

}

Abstraction 95

class Main

{

 public static void main(String[] args)

 {

 Employee di = new Employee();

 di.employeeNumber =++Employee.numberOfEmployees;

 Employee ken = new Employee();

 ken.employeeNumber = ++Employee.numberOfEmployees;

 System.out.println(di.employeeNumber);

 System.out.println(Employee.numberOfEmployees);

 }

}

Study the preceding code carefully. The class Employee maintains a class-wide copy of
numberOfEmployees.

A B S T R A C T I O N

Abstraction is an important concept to understand when learning Java. Abstraction is a
way of looking at objects in terms of what you want them to do, rather than how they do
it.

Abstraction is a process in which a software developer views a class as a black box,
focusing on its input and output, rather than on the details of its implementation. For
example, suppose you are designing an application that allows users to generate a graph
depicting sales growth. You might develop a graph class that is responsible for taking in
raw data and generating a graphic image to be displayed in a window.

Using abstraction, you can imagine this class as having a number of inputs, including the
number of points to plot, the data series, and the size of the resulting graphic image on
the screen. You can also expect a certain result: a graphic image of a certain size. However,
the implementation details can be ignored during the design process.

96 Chapter 6—Classes and Objects

Abstraction provides several advantages. During the design process, abstraction allows
software developers to focus on the design of complete applications and systems without
pausing to consider implementation details. Also, by focusing on the interface to a class,
abstraction allows classes to be more easily reused, modified, or replaced. If at some later
time you decide to replace your graph class with a new class that generates a three-
dimensional graph, the process will be simpler because the implementation details were
not finalized during the design process.

O B J E C T R E F E R E N C E S

The preceding chapter introduced you to references. Similar to a pointer in C and other
languages, a reference is a variable that holds information about the location in memory
of other information. When you work with objects, you are actually working with
references.

Suppose you create two Employee variables: rachael and tmpEmp. When you instantiate a
new Employee object using the new keyword, the object reference rachael points to the
newly created Employee object. Since tmpEmp and rachael are references, if you assign
tmpEmp to rachael, then both references will point to the same object. Thus, any changes
in one object will be reflected in the other. The result is shown in Figure 6-1.

Employee rachael = new Employee("Rachael", 32000, 5);

Employee tmpEmp = rachael;

Figure 6-1: tmpEmp variable

rachael

tmpEmp

name: "Rachael"
salary: 32000
sickDays: 5

Object References 97

If you have experience developing in other programming languages, you are probably
familiar with the problem of memory leaks. Memory leaks occur when data that is no
longer needed continues to be held in memory, even after all pointers or references to the
data are gone. Java provides a service called garbage collection that helps to eliminate
memory leaks. Instead of manually freeing memory (as in languages such as C), the Java
Virtual Machine automatically frees the memory used by objects to which no reference
points. Garbage collection is a low-priority process. The programmer need not manually
invoke the garbage collector; although, the garbage collection thread may be notified by
the System.gc() method.

TECH NOTE:
The programmer should make no assumptions as to when the garbage collector
will run. It is guaranteed to run only sometime after the object no longer has a
valid reference to it.

98 Chapter 6—Classes and Objects

Exercise 6-1: Creating your own classes

In this exercise, you will create your own classes, instantiate them, and practice accessing
their members using dot notation.

1. Create an Employee class with the following (minimal) instance variables. (You
may add more.)

String name;

double height;

int weight;

int age;

double salary;

int sickDays;

2. Add a printAll() method that will print these instance variables to the command
line.

3. Create the starting class and call it SectionTwo. Add a main() method. Then
instantiate two instances of the Employee class, set their variables, and print them
using the printAll() method that you implemented.

4. (Optional) Create a two-element array that can store elements of type Employee.
Populate the array with the two Employee instances created in Step 3, then attempt
to invoke the printAll() method of each instance.

5. (Optional) Use a for loop to loop through the elements of the array created in Step
4, then invoke the printAll() method.

It is often helpful to keep the different types of members together in your class (class
methods, class variables, instance variables, and methods). Comments are useful for
making these separations.

TECH TIP:
Remember that all members (class and instance, variables, and methods) begin
with a lowercase letter. You can distinguish between variables and methods by
the presence (or absence) of parentheses. The exception to this guideline is final
variables (constants), which are typically all capitalized.

Sun Certification 99

S U N C E R T I F I C A T I O N

Static members (Math)

Before taking the Sun certification exam, you should memorize several static methods
from the class java.lang.Math. These methods are:

ceil() // Returns the next higher integer.

floor() // Returns the next lower integer.

random() // Returns a random double between 0 and 1.

abs() // Returns the absolute value.

min() // Returns the smallest of two values.

max() // Returns the largest of two values.

round() // Finds the closest integer to a floating-point

 // number.

sqrt() // Returns the square root of a number.

sin() // Returns the sine of an angle in radians.

cos() // Returns the cosine in radians.

tan() // Returns the tangent in radians.

We will discuss packages later in this section. You first need to know how to use these
methods. The class Math has no instance methods or variables. Therefore, you will never
create an instance of Math. For example, if you wanted to use the following method:

public static int max(int x, int y)

you would need to reference the class name (Math) followed by the dot and the method
name. The statement would be:

int biggerNumber = Math.max(15, 24);

100 Chapter 6—Classes and Objects

Garbage Collection

Review the discussion of garbage collection. Automatic garbage collection is one of the
key features of the Java language, and it is important to be thoroughly familiar with how
it operates.

Initial Values

Remember that the initial values for variables are applicable only for instance and class
variables. Local variables (those declared inside a method) are not automatically
initialized.

S U M M A R Y

In this chapter, you learned how, in an object-oriented design, a class functions as a
blueprint for the concrete instantiation of an object. Next, you learned the difference
between instance membersand class members. Instance members are separate for each
instance. Class members are kept in common throughout all instances (if any exist).
With this introduction to classes and objects, you can begin to appreciate the value of
abstract design of object-oriented systems in Java. More complex uses of classes and
objects will be covered in a later chapter.

Post-Test Questions 101

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is the difference between an object and a class?

...

...

2. How would an instance of class Employee be created?

...

...

3. How would static method getPay() be called for an object Dave of class Employee,
if getPay() returns a double?

...

...

102 Chapter 6—Classes and Objects

M A J O R T O P I C SM A J O R T O P I C S

7

Inheritance

Objectives .. 104

Pre-Test Questions... 104

Introduction .. 105

What Is Inheritance?.. 105

Extending Classes .. 107

Overriding Methods .. 112

Sun Certification ... 114

Summary ... 116

Post-Test Questions ... 117

104 Chapter 7—Inheritance

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Create a new class that uses inheritance.

� Create an overridden method.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is encapsulation?

...

...

2. Suppose you have a class Employee and a class Nurse. The Employee class has a
method called getPay() which defines a function to calculate the salary of the
employee. The class Nurse is a subclass of Employee but needs a different function
to calculate the salary. How would this be implemented?

...

...

Introduction 105

I N T R O D U C T I O N

Inheritance is an important aspect of object-oriented programming. This chapter will
provide the fundamentals needed to implement inheritance in Java programs. An
explanation of inheritance and how it is used is provided. This is followed by a discussion
on extending classes, polymorphism, and overriding methods. Lastly, there is a section
that discusses what is expected on Sun’s Java certification exam.

Stop now and view the following video presentation on the Interactive
Learning CD-ROM (jCert):

Java Programming Fundamentals
Inheritance

W H A T I S I N H E R I T A N C E ?

Inheritance is a very useful concept in object-oriented programming that allows the reuse
of methods across different classes. Inheritance allows this code to be reused unchanged
or to be tailored to meet specific needs. The tailoring of that code is called overriding a
method and will be discussed later in the chapter.

Inheritance can be described in familiar terms. One common approach is to start with an
Animal class, and from the Animal class derive a Mammal class (a more specialized Animal).
From Mammal, you can derive a Dog class, and so forth. This example is conceptually
practical in many ways. In this case, a Mammal class would inherit all of the properties of
the Animal class, just as a Dog class inherits all of the properties of Mammal.

Recall our brief introduction to objects in Section I. We described how a window on a
computer screen can be considered an object with properties and methods. If you want to
create your own window, one with buttons and an editing field, where would you begin?
You could start from scratch and write your own Window class, but why? One already
exists. You can use what is already available and modify it to suit your needs. This style of
code reuse is the principle of inheritance. In the next section, we demonstrate how one
might go about making use of inheritance.

106 Chapter 7—Inheritance

Using inheritance

A classic example of inheritance is the staff of a business. In this case, everyone on staff is
an Employee. Every employee shares common traits such as salary, benefits, and age. Most
likely, the staff will be made up of multiple job titles each of these having properties,
specifically the job. Each of these job titles will inherit the properties of an Employee.

TECH TIP:
Inheritance can speed development time by decreasing the amount of
redundency in the code as well as increase the overall performance of a program
by localizing the information stored.

A Programmer is an Employee who has a specific profession and salary. You can also
define a method called calculateSickDays(), which uses the profession to determine
the number of sick days that an employee has available. One way to define a Programmer
is to create a class that contains all of the properties of a programmer. This would include
all properties, the properties that an average employee would have, and all of the
properties the are unique to a programmer. Consider the following class definition.

class Programmer

{

 // class variable

 static int numberOfEmployees = 0;

 int employeeNum; // key field

 String name; // the employee's name

 double height; // height in inches

 int weight; // weight in pounds

 int age; // age in years

 double salary; // salary in dollars

Extending Classes 107

 // instance variables specific to Programmer

 String language; // language he/she programs in

// methods of Employee such as calculateSickDays()

public int CalculateSickDays()

 {

 // body

 }

// ...

}

E X T E N D I N G C L A S S E S

The problem with previous Programmer classes is its redundancy. The Employee class
contains many of the same properties that the Programmer class contains. Inheritance
allows you to reuse the properties in the Employee class that have already been defined. A
better approach to creating the Programmer class would be to extend the Employee class.
By doing this, a Programmer object will inherit all the methods and variables from
Employee . In the example below, the Programmer class is a subclass of Employee which in
turn is a superclass to Programmer. The new Programmer class will only need to describe
how it is different from the superclass.

public class Employee

{

 static int numberOfEmployees = 0;

108 Chapter 7—Inheritance

 int employeeNum; // key field

 String name; // the employee's name

 double height; // height in inches

 int weight; // weight in pounds

 int age; // age in years

 double salary; // salary in dollars

public int CalculateSickDays()

 {

 // body

 }

}

class Programmer extends Employee

{

 // instance variables specific to Programmer

 String language; // language he/she programs in

 // Specific methods

 public String CurrentCertifications()

 {

 // body

 }

}

Extending Classes 109

By using this method, a new type of employee called janitor can now be defined. A
janitor’s job is completely unrelated to that of a programmer. However, the janitor will
include all of the properties of an employee.

class Janitor extends Employee

{

 // instance variables specific to Janitor

 String chemicals;

 // Specific methods

 public String AreasToClean()

 {

 // body

 }

}

Now, if we were to create an instance of either the Programmer class or the Janitor class,
then both would have the properties of an Employee. In the following example, an
instance of the Programmer class called bill is created. The bill object is then configured
for this employee’s specifications.

Programmer bill = new Programmer();

bill.name = "Bill";

bill.employeeNumber = ++Employee.numberOfEmployees;

bill.language = "Java";

System.out.println(bill.language);

bill.sickDays = 5;

In the example above, the Programmer class extends the Employee class. Also, Employee
implicitly extends the Object class. Every class is a subclass of the top most superclass,
Object.

TECH TIP:
Java does not support multiple inheritance. Only one class can be listed in the
extends clause. Interfaces provide a way of accessing methods in multiple classes.
A class that implements an interface has an IS-A relationship with that
Interface.

110 Chapter 7—Inheritance

Using this and super()

A reference to the current object is done by using this. The this reference is used for
self-assignment purposes. In other words, this is an internal reference by an object to
itself. The this reference can be used inside a constructor to call one of the other
constructors in the same class. As an example, examine the following code.

public Program()

final int START=0;

final int FINISH=0;

{

 this(START, FINISH); //call the 2-parameter constructor

}

public Program(int x, int y)

{

 //code for constructor

}

The zero parameter constructor Program() contains code that calls the two parameter
constructor in the same clastor Program() contains code that calls the two parameter
constructor in the same class. This is a common method for providing a default
constructor while at the same time being able to initialize class variables.

Extending Classes 111

It is common to make calls to the super class. Often, the super class contains methods
that the sub-class needs. The call to these methods is accomplished by using the super
keyword. Since the sub-class is an object of the superclass, it will have access to all of the
methods in the superclass. Here is an example:

public class Teacher extends Worker

{

 public void action()

 {

 teach(); //teach like a Teacher

 super.getPayCheck(); //get pay check like a Worker

 }

}

The instanceof Operator

Due to the properties of inheritance, it is also a valid operation to cast a subclass up to a
superclass. In this case, you could use the instanceof operator to verify that a given
expression is an instance of some class. The line

object instanceof SomeClass;

evaluates to true if object is an instance of SomeClass, and is false otherwise. The
instanceof operator can be used with any object and any class. It is important to realize
that all classes are subclasses of Object and as such, instanceof will always be true when
used with Object.

112 Chapter 7—Inheritance

O V E R R I D I N G M E T H O D S

The printAll() method that was inherited from Employee does not know about the
Programmer variable language. This is because the variable does not exist in the Employee
class. The printAll() method of Employee will not print the additional instance
variables that are located inside the Progammer class. There are two possible solutions for
this problem.

1. Completely, rewrite all of the code for the printAll() method inside the
Programmer class.

2. Reuse the printAll() method from Employee and add the functionality that is
missing.

The best solution is to use the printAll() method inherited from Employee, and modify
it just enough to print the additional variables. The super keyword allows access to
members of the superclass from the subclass. The following code demonstrates this
technique.

void printAll()

{

 super.printAll(); // call the parent object's method

 System.out.println("Language: " + language);

}

This method has the same method signature as the printAll() method in Employee. A
signature is composed of a methods name and parameter list. If the same method
signature exists in both the super and sub classes, the method is overriden. If the
printAll() method is called on an object of type Programmer, the printAll() method in
th Programmer class that will be executed. Overriding a method allows a subclass to
customize a method for its particular needs. However, if the printAll() method on an
object of type Employee is called, the printAll() method from Employee will be
executed.

Overriding Methods 113

TECH TIP:
Overridding is one of the key features that makes polymorphism available. The
Java Virtual Machine will determine at run time what the actual type of the
object is and execute the appropriate method.

Exercise 7-1: Implementing inheritance

In this exercise, you will see the power that inheritance provides programmers in reducing
code redundancy as you practice subclassing superclasses.

Implement the following hierarchy of classes:

Figure 7-1: Class Hierarchy

1. The foundations of the Employee and Programmer classes have already been given.
Create two additional classes named Physician and Administrator that meet the
following requirements:

� A Physician is an Employee with a DEA# for writing prescriptions.

� An Administrator is an Employee with a specific title.

2. (Optional) Extend either Programmer, Physician, or Administrator one level
further. For example, a Pediatrician is a special type of Physician.

In all three classes, the printAll() method will need to be properly overridden.

Programmer Physician Administrator

Employee

114 Chapter 7—Inheritance

S U N C E R T I F I C A T I O N

One of the concepts tested in the Sun certification exam is your ability to determine the
outcome of overridden variables and methods in superclasses and subclasses. You are also
expected to know how to store subclass objects in superclass types. The following
example demonstrates both skills:

class Super

{

 int myInt = 42;

 String test()

 {

 return "Super";

 }

}

class Sub extends Super

{

 int myInt = 11;

 String test()

 {

 return "Sub";

 }

}

Sun Certification 115

Working with the following two objects is familiar:

Super mySuper = new Super();

Sub mySub = new Sub();

System.out.println(mySuper.test()); // prints "Super"

System.out.println(mySuper.myInt); // prints 42

System.out.println(mySub.test()); // prints "Sub"

System.out.println(mySub.myInt); // prints 11

Apply the skills you have learned to the following object:

Super superSub = new Sub();

Because Sub extends Super, this declaration is valid. The Sub object created by new Sub()
must also be a Super object. The behavior of the overridden variables and methods is
unusual. The variable depends on the type of the object reference superSub, whereas the
method depends on the type of the object that was created. For example:

System.out.println(superSub.test()); // Prints "Sub"

 // from new Sub().

System.out.println(superSub.myInt); // Prints 42

 // from Super type.

The rules of casting say that you can always put an object into a more general type (that
is, you can implicitly cast up the hierarchy). For this reason, you can place the object
created by new Sub() into a Super type object reference. Another way to think about this
is that a Programmer object is an Employee, so you could assign a Programmer object to
an Employee type reference without explicitly casting. If this is reversed, explicit casting is
required.

Employee e = new Programmer(); // Legal because

 // Employee is

 // derived from Programmer.

Programmer p = (Programmer) e;

116 Chapter 7—Inheritance

Because the Employee object e actually contains a Programmer object, it can be cast to a
Programmer variable. However, the following code would cause a ClassCastException to
be thrown.

Employee e = new Employee();

Programmer p = (Programmer) e; // ClassCastException

S U M M A R Y

This chapter covered how inheritance allows you to reuse code to meet specific needs.
You also learned how to override methods and use the overridden method in its own
implementation. Inheritance allows you to intelligently reuse classes that have already
been written, thereby increasing the speed of development in an object-oriented
language. While many design issues must be considered, you can create very sophisticated
programs with few lines because much of the work will be done already.

Post-Test Questions 117

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. How would you create a new instance of an Employee?

...

...

2. How would you call a super class constructor with a String and int as arguments
respectively inside of a subclass?

...

...

3. What (JRE)wouldwould(JRE) print if the following code executed?

int number; double num;

calculate(number); calculate (num);

public void calculate (int number) { System.out.print(“LAST”);}

public void calculate(double num) { System.out.println(“FIRST):}

...

...

118 Chapter 7—Inheritance

M A J O R T O P I C SM A J O R T O P I C S

8

Constructors

Objectives .. 120

Pre-Test Questions... 120

Introduction .. 121

What Is a Constructor? .. 121

Using Constructors .. 123

This ... 126

Constructor Process ... 129

Constructors and Callbacks ... 130

Strings and StringBuffer .. 132

Sun Certification ... 139

Summary ... 142

Post-Test Questions ... 143

120 Chapter 8—Constructors

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Use the default constructor.

� Describe what occurs when a constructor is called.

� Create a constructor to set values.

� Call constructors from the same class (this).

� Call constructors from the parent class (super).

� Create a no-arguments constructor.

� Discuss String characteristics and define the common methods of String.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is a constructor?

...

...

2. How would you invoke a method that has been overridden?

...

...

3. If a string is passed to a function, will it be altered?

...

...

Introduction 121

I N T R O D U C T I O N

Constructors are a useful tool in object oriented programming. They save programming
effort, and if done well, lead to clean, easily maintained classes that can be used in a
variety of situations. In this chapter you will be introduced to the fundamentals of
constructors and you will be re-acquainted with method overloading, which was
introduced to you in chapter 4. You will also learn the keywords this and super and be
introduced to the String class which implements constructors extensively.

W H A T I S A C O N S T R U C T O R ?

A constructor is a special method that is used to instantiate an object. You have already
been using constructors with statements, such as the following:

Employee sam = new Employee();

Programmer ken = new Programmer();

The syntax after the new keyword closely resembles a method. This format is a
constructor, a method that has the same name as the class in which it exists. This
constructor method does not have a return type. While it is generally said to return
nothing, it does not have void listed as its return type as other methods that return
nothing would. However, the combination of the new keyword with a constructor returns
a reference to an object.

122 Chapter 8—Constructors

What can constructors do?

Constructors are used to initialize an object that you are instantiating. First, initialize a
new object without using constructors. With a class Programmer that had member
variables name, height and weight, and has corresponding methods. Create a new
instance of this class for a new programmer named Rachael, who is 62 inches tall and
weighs 120 pounds. Use the following syntax:

Programmer rachael;

rachael = new Programmer();

rachael.setName(“Rachael”);

rachael.setHeight(62);

rachael.setWeight(120);

This can be tedious when creating many different objects. A better solution is to create a
constructor for the Programmer class, as in the following:

class Programmer

{

 private int height;

 private int weight;

 private String name;

 //The constructor starts here

 Programmer(String n, int h, int w)

 {

 height = setHeight(h);

 weight = setWeight(w);

 name = setName(n);

 }

 //end of the constructor

 ...Rest of Programmer methods go here...

}

Using Constructors 123

The constructor has the same name as the class it is constructing, and it does not have a
return type associated with it. The constructor is guaranteed to return an object of the
type that it is constructing. In other words, the Programmer constructor returns an object
of type Programmer. To use the constructor, simply use the following:

Programmer rachael;

rachael = new Programmer("Rachael",62,120);

The first line declares a Programmer object named rachael, and the second line
instantiates it and initializes the name, height and weight variables. Often the two
previous lines are replaced by the single line:

Programmer rachael = new Programmer(“Rachael”,7,48);

The four original lines have now been replaced with one simple line of code.

One of the primary goals of object-oriented programming is to establish an effective and
architecturally sound means of interobject communication. Constructors accommodate
this need with a technique referred to as callback. If an Object B needs to communicate
with an Object A, then B can issue a callback to A.

U S I N G C O N S T R U C T O R S

Once a class is created, instantiate it into an object. An object of type Programmer can be
created using the following statement:

Programmer rachael = new Programmer();

The statement new Programmer() calls the default constructor, a constructor with no
parameters. The constructor returns an object of type Programmer. The format for a
constructor is as follows:

className(parameter_list)

{

 // executable code

}

124 Chapter 8—Constructors

Constructors look and behave like methods, with two differences: constructors have the
same name as the class, and they do not have a return type. A constructor is always called
with the keyword new. The default constructor for a class has no parameters:

Programmer()

{

 name = “null“;

 height = setHeight(0); // initailize everything to zero

 weight = setWeight(0);

 age = setAge(0);

}

The above constructor uses the class’s methods, such as setHeight, and setWeight,
(which would have to be added by the programmer) to initialize its variables height and
weight. However, overloading, another feature of methods, can be utilized to perform a
variety of different actions at initialization. Overloading occurs when two or more
methods exist that have the same name and pass different parameters. For example, to set
the programmer’s name and height at initialization, make an overloaded constructor, as in
the following code:

Class Programmer

{

 Programmer() //Default constructor

 {

 name = “null“;

 height = setHeight(0); // initailize everything to zero

 weight = setWeight(0);

 age = setAge(0);

 }

Using Constructors 125

 Programmer(String tmpName, int h) //An overloaded constructor

 {

 name = setName(tmpName);

 height = setHeight(h); // the height will be h

 weight = setWeight(0);

 age = setAge(0);

 }

 //........rest of Programmer methods would go here....

}

The age and the weight are still not initialized by the constructor. These could, of course,
be added to the constructor or set later by explicit method calls.

The Java compiler differentiates between calls to either method by examining the
parameters passed.

Programmer(String tmpName);

Programmer(String tmpName, float tmpHeight, int weight);

The constructors’ parameters cannot have identical data types. For instance, the following
two constructor formats could coexist:

Programmer(int h, int w, String name);

Programmer(short age, int w, String name);

The following two constructor formats would not be allowed:

Programmer(int h, int w, String name)

Programmer(int age, int w, String name)

In the Java 2 API, overloaded constructors are used frequently. This concept will become
apparent in Section III when you study the AWT.

126 Chapter 8—Constructors

T H I S

The keyword this has several uses in Java, even though it officially refers to the current
object. The first use of this is when referring to a constructor, specifically one in the
current class. The second function is to avoid namespace conflicts between a method's
parameter list and its variables.

this() as a constructor

When adding different combinations of parameters to the set of constructors, you
discover that much of the code is similar. The second constructor can be rewritten to use
the first constructor. The keyword this allows another constructor to be called that has
the same name but a different signature. The following is the rewrite of the second
constructor:

Programmer(String tmpName)

{

 this(tmpName, 68, 170, 35);

 //rest of constructor follows...

}

If the constructor this() is used, it must be the first statement in the constructor. The
this() constructor is also used to execute the same code for all constructors. In a previous
chapter, you added a statement after you created an Employee object to set the
employeeNumber. To apply that operation in the constructor, the constructor might be as
follows:

Employee()

{

 employeeNumber = ++numberOfEmployees;

}

To ensure that this operation is always called, add the statement this() at the beginning
of all other constructors. Now every Employee will have an employeeNumber, regardless of
which constructor is called.

This 127

TECH TIP:
One programming style is to define the default constructor first, which is
typically the most common constructor. All other constructors point to this
default constructor using the this keyword.

Avoiding namespace conflicts

Consider the following constructor:

Programmer(String tmpName)

{

 name = tmpName;

 height = 68; // The height will be 5'8".

 weight = 170;

 age = 35;

}

The variable name tmpName was used in the parameter list, and later assigned it to the
instance variable name. Two different names were used so that the local variable tmpName
would not conflict with the instance variable name. While this makes a class very clear, it
is not the common practice.

A second approach is to use the keyword this. Recall that this refers to the current
object. Therefore, the following modification is acceptable:

Programmer(String name)

{

 this.name = name;

 this.height = 68.0; // The height will be 5'8".

 this.weight = 170;

 this.age = 35;

}

By using the keyword this, the same variable name can be used without conflict. For
clarity in this course, the first method (appending tmp) will be used to generally define
parameters. Much of the previously written code uses the second method (this).

128 Chapter 8—Constructors

Super

Assume, as in earlier chapters, that Programmer extends the Employee class. If two
constructors are added to the Employee class, what happens when a Programmer is created?
The constructors for Programmer will call Employee(), and you will get an error message
informing you that Employee() does not exist. Once a constructor is added, the default
constructor is no longer automatically provided by the compiler. This functionality is
replaced by defining a no-arguments constructor:

Employee ()

{

}

Another constructor of the superclass can be called with the keyword super. As with the
constructor this(), when used super() must be the first statement of the constructor. For
example, to call the Employee(String) constructor from the Programmer(String)
constructor, use the following:

Programmer(String tmpName)

{

 super(tmpName);

}

TECH TIP:
If there is a behavior that all constructors must perform (such as the creation of
the employeeNumber), it should be done in the no-arguments constructor.
Then all the other constructors in the class can call the this() class.

Inheritance does not occur with constructors. The fact that an Employee constructor
takes a String does not guarantee that a constructor exists for Programmer with a String.

TECH TIP:
If any constructors are defined for a class, always define a no-arguments
constructor, even if it has no behavior. If the class will be extended, a no-
arguments constructor must exist so that the extended class will operate
properly. In other words, Java will NOT create a default constructor if any
constructor exists.

Constructor Process 129

C O N S T R U C T O R P R O C E S S

When a constructor is called in a class, a call is immediately made to the constructor of its
superclass. This process repeats itself up the class hierarchy to the class Object. This
concept can be readily demonstrated as follows:

class Parent

{

 Parent()

 {

 System.out.println("Creating the Parent");

 }

}

class Child extends Parent

{

 Child()

 {

 System.out.println("Creating the Child");

 }

}

class GrandChild extends Child

{

 GrandChild()

 {

 System.out.println("Creating the GrandChild");

 }

}

130 Chapter 8—Constructors

class Main

{

 public static void main(String[] args)

 {

 new GrandChild();

 }

}

This produces the following output:

Creating the Parent

Creating the Child

Creating the GrandChild

C O N S T R U C T O R S A N D C A L L B A C K S

Constructors are a major facilitator in establishing interobject communication. For
example, they can be used to create a Timer class, whose purpose is to invoke a method in
the class that instantiated it (after a certain interval of time).

Students often have difficulty adjusting to the idea of using callbacks as a regular part of
their programming skill sets. Remembering the reasons for using callbacks is helpful.
Every object in Java should be specialized. Callbacks allow an Object A to assign an
appropriate task to Object B. Object B can then notify Object A (asynchronously) when
the task is completed. This activity supports separation of responsibility between objects,
and efficient use of resources.

Constructors and Callbacks 131

You will create a Client object that creates and uses a Timer object. The Timer object will
invoke a method of the Client object using a callback. Study the following example
carefully:

class Timer

{

 int interval;

 Client client;

 Timer(Client Client, int tmpInterval)

 {

 this.client = Client;

 // client is a reference to the

 // Client object instantiated by

 // main()

 interval = tmpInterval;

 }

 void run()

 {

 while(true)

 {

 for(int i = 0; i<interval;i++);

 client.timerFired();// This is the callback.

 }

 }

}

public class Client

{

 public static void main(String[] args)

 {

 new Client();

 }

132 Chapter 8—Constructors

 Client()

 {

 Timer t = new Timer(this, 100000000);

 t.run();

 {

}

public void timerFired(

{

 System.out.println("Timer method fired.");

}

This example is used commonly in OO programming. One goal of this course is to make
this approach to interobject communication the standard. By the end of this section, you
will establish a way to implement the above code in a more reusable fashion with the use
of interfaces.

S T R I N G S A N D S T R I N G B U F F E R

You have been using Strings throughout these chapters. In Java, Strings are not
arrays or characters, nor do they need special terminators, as in C and C++. In Java,
Strings are treated as objects. By using the methods of String, programmers are
provided with comprehensive String functionality from the offset.

String constructors

Strings can be created in two ways. First, Strings are objects, thus there exists a
predictable constructor.

String s = new String("Hello");

This declares a String object initialized to "Hello". However, so does the following:

String s = "Hello";

Strings are used so frequently in this manner that Java interprets the quotation marks as
a constructor, which returns an instance of a String object initialized to "Hello". In
other words, the first and second methods of declaring a String are equivalent.

Strings and StringBuffer 133

String characteristics

Strings possess several characteristics that merit explanation.

Strings are immutable

Strings are immutable, meaning that once a String has been instantiated, it cannot
change. For example:

String s1 = "Hello";

s1 = "Goodbye";

It would seem that this code shows one String being assigned two values. However, two
different Strings were created. However, the first String, "Hello", is no longer being
referenced and is available for garbage collection.

Strings are immutable, for increased speed. If Strings were dynamic, String processes
would be slower.

Concatenating Strings

Concatenating Strings means adding or combining Strings together.

If Strings are immutable, how can you explain the following code?

String s = "Hello, " + "world!";

Remember that "Hello," and "world" are immutable Strings themselves, so there should
exist no String operation that would add the two Strings together. However, Java uses
another class to perform the concatenation: the StringBuffer class, which will be
discussed shortly.

134 Chapter 8—Constructors

Comparing Strings: equals() and ==

Because Strings are also objects, you need two ways to compare Strings.

The equals() method of String compares two strings, to discern if they contain the
same characters.

String s1 = "keyboard";

String s2 = "keyboard";

if(s1.equals(s2))

 System.out.println("true");

else

 System.out.println("false");

This code would print “true” because the two Strings contain the same characters.

The == operator determines whether the two Strings refer to the same object.

String s1 = "keyboard";

String s2 = new String(s1);

if(s1 == s2)

 System.out.println("true");

else

 System.out.println("false");

This code would print “false”. By creating a completely new String with the new
operator, s1 and s2 are completely different objects (albeit with the same characters).

Strings and StringBuffer 135

Methods of String

Because Strings are objects, many methods are available. Table 8-1 lists the common
methods of Strings.

These methods are not difficult. For example:

String s = "Mother";

char c = s.charAt(2);

The character c now has the character value t.

Table 8-1: Common methods of Strings

Method Description
length() Returns an int of the number of characters

toUpperCase() Returns a new String with all uppercase letters

toLowerCase() Returns a new String with all lowercase letters

equals() Returns true if the Strings have the same length
and same characters (case-sensitive)

equalsIgnoreCase() Same as equals(), but not case-sensitive

charAt() Returns the character at the index

indexOf()

lastIndexOf()

Returns the index of the first or last occurrence of a
character or substring

substring() Returns a substring from a String

trim() Returns a new String with leading and trailing white
space removed

136 Chapter 8—Constructors

However, Strings are immutable. Consider how to change a String from lowercase to
uppercase.

String s = "hello";

s.toUpperCase(); // This won't work – Strings are

 // immutable.

s = s.toUpperCase(); // We would have to do this, i.e.

 // create a new String.

The above code could also have been written as follows:

String s = "hello".toUpperCase();

Remember that a literal String in double quotation marks is considered a String object.

StringBuffer

The StringBuffer provides the missing functionality of the String class, because the
StringBuffer class is not immutable. Therefore, additional characters can be inserted
into a StringBuffer, or modifying specific characters within a StringBuffer.

Declaring a StringBuffer is just like declaring a String, except you cannot automatically
call a constructor with the quotation marks.

StringBuffer sb = new StringBuffer("Hello people"); // OK

StringBuffer sb = "Hello people"; // Won't work.

Because a StringBuffer is not immutable, you can take advantage of its many methods
that change the contents of the StringBuffer.

StringBuffer sb = new StringBuffer("Hello people");

sb.insert(6, "nice ");

This code would set the variable sb to the following:

"Hello nice people"

Strings and StringBuffer 137

StringBuffers are slower than Strings. It is therefore common to convert a
StringBuffer into a String using the toString() method, or by declaring a new String
once the StringBuffer manipulations are complete.

StringBuffer sb = new StringBuffer("Hello people");

sb.insert(6, "nice ");

String s1 = new String(sb); // Here's one way.

String s2 = sb.toString(); // Here's another way.

Exercise 8-1: Building constructors

In this exercise, you will demonstrate several uses of a constructor, such as setting the
initial state of an object. The this constructor can also make your less redundant and
more readable.

1. Add a constructor to the Programmer class that allows you to specify the following
default information: name, height, age, weight, and language.

2. Add another constructor to the Programmer class, so that if name, height, age and
weight are supplied but language is not, then a language is automatically
supplied. The constructor defined in Step 1 will be called.

HINT: Use the this constructor.

3. (Optional) Add appropriate constructors for the Physician and Administrator
classes.

TECH TIP:
Constructors should be grouped together in the class and identified by a
comment statement, just like instance variables, instance methods, class
methods, and class variables.

138 Chapter 8—Constructors

Exercise 8-2: Implementing callbacks

In this exercise, you will develop a Timer class that makes a callback to the object which
instantiated the Timer.

Write a MyClock class that will use this Timer object to display the date and time of day
every second via a callback. Later in the course, you will learn a more effective way of
creating this Timer system. However, it is important to first master the concept of
callbacks.

1. Create a class called MyClock.

� This class contains a public static void main(String[] args) method and
instantiates a class of type Timer. The Timer constructor takes an object of
type MyClock, and an integer (the length of the delay interval).

� The MyClock class also contains a method called timerFired(), which is void.
Step 4 will explain how to display the current date from within this method.

2. Create a second class called Timer.

� The constructor receives the MyClock object and length of the interval as
parameters. This class also contains a method called run(), which is void. This
method contains an infinite loop that repeatedly calls the timerFired()
method of the MyClock object.

� The run() method of the Timer object must be invoked to start the repeated
callbacks.

Sun Certification 139

3. In the timerFired() method, use a System.out.println() to display the time of
day every second. Consider the following example using the Date class:

Date date = new Date();

System.out.println(date.toString());

TECH NOTE:
The java.util.* package must be imported.

4. (Optional) The Date class has been largely deprecated in favor of the Calendar
class. Consult your API documentation, then replace the Date class with the
Calendar class.

S U N C E R T I F I C A T I O N

Strings

The String class is another class in the predefined API that you will must know for the
Sun examination.

You are expected to know the following methods for the exam:

length() // Returns an int of the # of characters.

toUpperCase()// Returns a new String with all CAPS.

toLowerCase()// Returns a new String with all lowercase.

equals() // Returns true if the Strings have the same

 // length and same characters

 // (case sensitive).

140 Chapter 8—Constructors

equalsIgnoreCase() // Same as equals, but not

 // case-sensitive.

charAt() // Returns the character at the index.

indexOf()

lastIndexOf()// Returns the index of the first or last

 // occurrence of a character or substring.

substring() // Returns a substring from a string.

trim() // Returns a new String with leading and

 // trailing white space removed.

Refer to the information on Strings earlier in this chapter.

Constructors

You can expect a few questions asking you to determine which statements run when
constructing inherited objects. Following is an example:

class Super

{

 int myInt;

 Super()

 {

 System.out.println("Super – no args");

 }

Sun Certification 141

 Super(int tmpInt)

 {

 myInt = tmpInt;

 System.out.println("Super – int");

 }

}

class Sub extends Super

{

 int myInt;

 Sub()

 {

 System.out.println("Sub – no args");

 }

 Sub(int tmpInt)

 {

 myInt = tmpInt;

 System.out.println("Sub – int");

 }

}

Consider what will happen when the following statement is executed:

Sub s = new Sub(42);

It is important to understand that the constructor for Sub will call the no-arguments
constructor for Super, rather than the constructor with one argument. To call that
constructor, you must invoke super(tmpInt) as the first line in the constructor for Sub.

142 Chapter 8—Constructors

S U M M A R Y

This chapter discussed the use of constructors, callbacks, and the keyword this. You also
built constructors to supply default information for an instance of a class, and learned
how to use the keyword super to call the parent class's constructor. The body of a
constructor is an executable piece of a Java program, and will be called each time a class is
instantiated to create an object. Although we concentrated on default values and
callbacks, you can perform any sort of function in a constructor, although it is called only
once for each object.

Post-Test Questions 143

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What would print if this code were executed?

static void addstring(String s){s+=” World”;}

public static void main(String (JRE)atgs[]args[](JRE)){

 String s = “Hello”;

 addstring(s);

 System.out.println(s);

}

...

...

2. What would print if this program executed?

 static String addstring(String s){

 s+=” World”;

 return s;}

public static void main (String args[]){

 String s=”Hello”, a;

 a= addstring(s);

 System.out.println(a);

}

...

...

144 Chapter 8—Constructors

3. What would be printed if the following code was executed?

class Super

{public Super(){ System.out.print(“Sub”);} }

class Sub (JRE)extends Super(JRE)

{ public Sub(){ (JRE)this.(JRE)super();
System.out.print(“Super”);}

public static void main (String sting[]){

 Sub sub = new Sub();

}

...

...

M A J O R T O P I C SM A J O R T O P I C S

9

Interfaces and Abstract Classes

Objectives .. 146

Pre-Test Questions... 146

Introduction .. 147

What Is an Interface? ... 147

Polymorphism ... 151

What Is an Abstract Class?... 158

Graduating Task #2: Interfaces and Polymorphism...... 161

Sun Certification ... 161

Summary ... 162

Post-Test Questions ... 162

146 Chapter 9—Interfaces and Abstract Classes

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Define the parts of an interface.

� Use interfaces to implement multiple inheritance.

� Create an abstract method.

� Use abstract classes.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. How does a class implement an interface?

...

...

2. What is polymorphism?

...

...

3. What is an abstract class?

...

...

Introduction 147

I N T R O D U C T I O N

This section will examine the specifics of interfaces, abstract classes, polymorphism, and
how interfaces and abstract classes aid in the realization of polymorphism by analyzing
example implementations in terms of object-oriented design.

Stop now and view the following video presentation on the Interactive
Learning CD-ROM (jCert):

Java Programming Fundamentals
Java API Interface

W H A T I S A N I N T E R F A C E ?

An interface can provide a solution for objects that have multiple characteristics. In your
fictional company example, consider the role of a contractor. A contractor is not an
employee, but you must pay the contractor a salary. Where do you place the contractor?
If you place him or her in the Employee category, some attributes and operations may be
inherited that you do not want to apply to a contractor. How do you give both types of
data similar characteristics, so that you can treat them similarly? Interfaces provide a
solution for this problem.

148 Chapter 9—Interfaces and Abstract Classes

Contents of an interface

In Java an interface is basically an abstract class. The characteristics of an abstract class
will be explained in more detail later in this chapter. For now, remember that an interface
can contain only abstract methods and final variables. A class may use an interface by
having the implements keyword followed by the interface name in the class header
declaration. Any class that implements the interface can be consider to have effectively
inherited the methods and the variables of that interface. Consider the following
example:

public interface Payable

{

 final double NOTHING = 0.0;

 abstract double calculateSalary();

}

abstract class Employee implements Payable

{

 // Remainder of class definition

 // must either contain an abstract calculateSalary()

 // or a concrete calculateSalary().

 abstract double calculateSalary();

}

class Contractor implements Payable

{

 // instance variables

 Boolean contractCompleted = false;

What Is an Interface? 149

 double calculateSalary()

 {

 double salary;

 if (contractCompleted)

 {

 salary = 15000.00;

 }

 else

 {

 salary = NOTHING;

 }

 return salary;

 }

}

You can add another class called BillableService that implements Payable. This class
would be completely external from the Employee hierarchy. Again, as in the preceding
abstract class example, you can create an array of Payable and execute the
calculateSalary() method on each element. Java can simulate multiple inheritance in
this manner.

Interface functions

Consider the earlier discussion on objects talking among/between objects.

Interfaces and coupling

As your object-oriented programming expertise grows, you will learn that designing by
interfaces is generally a superior approach to designing by inheritance. Although
inheritance is a powerful and useful feature of OO programming, it has one strong
drawback, coupling.

Coupling refers to the level of interdependency between objects. In reference to
inheritance, a subclass is tightly coupled with its superclass. Should the design of a
superclass change, it will most likely affect its subclasses, possibly in unpredictable and
detrimental ways.

150 Chapter 9—Interfaces and Abstract Classes

Coupling can be reduced with interfaces. The only responsibility an object has to its
interface is the methods it must implement. This way, the implementation is restricted to
the classes that implement the interface, but the classes may still be treated the same
because they are linked together by the common interface.

Interfaces and object types

Assigning a type to an object, engages a contract stating minimal behavior of that object.
This notion is a very powerful idea, because it extends the basic idea of the “is-a”
relationship associated with inheritance, to guarantee that an object can be treated in
many fashions. Consider it in relation to the following code:

abstract class Employee implements Payable

According to this statement, the Employee object can be treated as at least three different
types:

� All classes in Java are implicitly a subclass of the Object class. Thus, the methods
of Object such as toString() and notify() are available to the Employee class and
all other classes.

� It is an object of type Employee explicitly.

� It is an object of type Payable because it implements the Payable interface. Thus,
the calculateSalary() method is available.

The ability to make an object behave as another type by simply adding an interface is an
extremely powerful mechanism for establishing interobject communication. If Object A
has implemented a certain interface, and Object B knows this, then Object B knows how
to communicate to Object A.

Polymorphism 151

P O L Y M O R P H I S M

Polymorphism means many shapes; this is simple to apply by thinking of an object as a
combination of different types of objects. That is a single object that has an is-a
relationship with various other objects. Polymorphism is visible in two different cases:

1. One method is called invoking different methods on different objects.

2. One object is taking on different types.

Polymorphism occurred when you created an array of type Employee that contained
objects of different types, and then invoked the calculateSickDays() method—a
method name common to all these objects. Do not be confused by the fact that they all
use the same method name. Every different type of Employee contains a different method
for calculating sick days. The actual type of Employee is determined at run time and the
appropriate method is called. Although each object has a calculateSickDays() method,
each individual object had to implement that method in a meaningful (and probably
unique) way.

TECH NOTE:
The example of using polymorphism with the abstract class Employee could also
have been performed by using an array of a particular type of interface. For
example, if the Employee class implements the Payable interface, then an array
of Payable objects can be created to invoke the calculateSalary() method of
Payable.

152 Chapter 9—Interfaces and Abstract Classes

The Clock/Timer system you have been developing is a strong candidate for
polymorphism via interfaces if you make the following observations:

// The following is similar to your previous work:

import java.util.*;

public class DigitalClock

{

 public static void main(String[] args)

 {

 new DigitalClock();

 }

 DigitalClock()

 {

 Timer t = new Timer(this, 10000000);

 t.run();

 }

 public void timerFired()

 {

 System.out.println(new Date().toString());

 }

}

Polymorphism 153

// You had a Timer class that could perform the callback:

public class Timer

{

 DigitalClock dClock;

 int delay;

 Timer(DigitalClock dClock, int delay)

 {

 this.dClock = dClock;

 this.delay = delay;

 }

 public void run()

 {

 while(true)

 {

 for (int i = 0; i < interval; i++);

 dClock.timerFired();

 }

 }

}

154 Chapter 9—Interfaces and Abstract Classes

The preceding code worked well. However, suppose you wanted to use your Timer class
again. Instead of using another instance of the DigitalClock class, use an altogether
different class. For example:

public class StockUpdateServer

{

 public static void main(String[] args)

 {

 new StockUpdateServer();

 }

 StockUpdateServer()

 {

 Timer t = new Timer(this, 10000000);

 t.run();

 }

 public void timerFired()

 {

 // code with latest stock updates

 }

}

Do you see the dilemma here? Currently, your Timer class is designed to receive objects of
type DigitalClock. However, with this StockUpdateServer class, you are asking it to also
receive an object of type StockUpdateServer.

What options are available?

Polymorphism 155

Following are two suggestions often given by students. Both are incorrect, but they
demonstrate good thinking processes.

Solution 1: Overload the constructor to accept objects of both
DigitalClock and StockUpdateServer.

Response 1: This solution would work, but suppose you had 100
different typed objects that would like to use this Timer
object. It would not be reasonable (or flexible) to overload
a constructor 100 times.

Solution 2: Because DigitalClock and StockUpdateServer both
extend from Object, redesign the constructor of the Timer
class to accept objects of type Object.

Response 2: Although, both objects share the Object type, the Timer
class is trying to invoke a timerFired() method as a
callback. Objects of type Object do not have a
timerFired() method.

These scenarios motivate the need for constructors, because if the DigitalClock class and
StockUpdateServer class have nothing appropriate in common, you can supply an
interface as a common element.

156 Chapter 9—Interfaces and Abstract Classes

The correct solution follows:

public interface TimerInterface

{

 public abstract void timerFired();

}

public class DigitalClock implements TimerInterface

{

 public static void main(String[] args)

 {

 new DigitalClock();

 }

 DigitalClock()

 {

 Timer t = new Timer(this, 10000000);

 t.run();

 }

 public void timerFired() //associated with TimerInterface

 {

 System.out.println(new Date().toString());

 }

}

Polymorphism 157

public class StockUpdateServer implements TimerInterface

{

 public static void main(String[] args)

 {

 new StockUpdateServer();

 }

 StockUpdateServer()

 {

 Timer t = new Timer(this, 10000000);

 t.run();

 }

 public void timerFired() //associated with TimerInterface

 {

 // code with latest stock updates

 }

}

public class Timer

{

 TimerInterface tiObj;

 int delay;

 Timer(TimerInterface tiObj, int delay)

 {

 this.tiObj = tiObj;

 this.delay = delay;

 }

158 Chapter 9—Interfaces and Abstract Classes

 public void run()

 {

 while(true)

 {

 for (int i = 0; i< delay; i++)

 tiObj.timerFired();

 }

 }

}

Run both the DigitalClock and StockUpdateServer simultaneously to see
polymorphism in action.

W H A T I S A N A B S T R A C T C L A S S ?

Consider the following example to help explain abstraction and its relation to an abstract
class. Consider a small animal set consisting of fluffy the Cat, fido the Dog, spot the
Dog, and tweety the Bird. You can collect fido and spot into the Dog class, and you
might recognize that both Dogs and Cats are Mammals, but what would it mean to create a
Mammal object? Mammal is an abstraction that you can use to describe common properties
of Dog and Cat, but you never actually create a Mammal. Therefore, Mammal is abstract.

What Is an Abstract Class? 159

With Java, you can make either a class or a method abstract. In your example system,
define the Employee class to be abstract. In the company example you will create only
Administrators, Programmers, and Physicians, but never Employees. Of course,
Administrators, Programmers, and Physicians are also Employees, but you cannot create
an Employee object. The new Employee class would be:

abstract class Employee

{

 // Employee constructors all go here.

 Employee() // There will be other constructors.

 {

 }

 // instance variables

 int sickDays;

 String name; // person's name

 double height; // height in inches

 int weight; // weight in pounds

 int age; // age in years

 double salary; // salary in dollars

 // instance methods

 void printAll()

 {

 System.out.println("Sick days: " + sickDays);

 }

 abstract void calculateSickDays();

}

160 Chapter 9—Interfaces and Abstract Classes

Notice that the calculateSickDays() method was also defined as abstract. To make a
method abstract, simply include the keyword abstract and do not declare a body
block. If any method is declared abstract in a class, then the class must be declared
abstract. You can, however, make the class abstract without having any abstract
methods. If the class is abstract, it cannot be used to create an object, but must be
extended to a subclass with all methods defined. You can also make the subclass abstract
if you do not define all the abstract methods.

Remember that classes also define a data type, so an abstract class can be used for a type.
Suppose that you want to create an array of Employees, some of them Administrators,
some Programmers, and some Physicians. If you want to have all the Employees execute
the calculateSickDays() method, you could do the following:

Employee[] emps = new Employee[6];

Physician p1 = new Physician();

// Declare the other Employee subclass objects.

emps[0] = p1;

// Store the other Employee subclass objects

// to the array.

for (int i = 0; i < emps.length; i++)

{

 emps[i].calculateSickDays();

}

Even though, you cannot create Employee objects, you can store Employee subclass objects
into an array of Employees. You know that the calculateSickDays() method will be
defined for all of the elements of the array because they are all extending Employee,
guaranteeing that they have this method.

Graduating Task #2: Interfaces and Polymorphism 161

G R A D U A T I N G T A S K # 2 : I N T E R F A C E S A N D P O L Y M O R P H I S M

Currently, your Clock/Timer class system is referred to as tightly coupled because the
Clock and Timer classes are uniquely dependent on each other to create their callback
scenario. In this exercise, you will remedy this dependency with the use of an interface.

1. Create and compile an interface called TimerInterface that prototypes a single
method public void timerFired().

2. Decouple your current MyClock and Timer classes by implementing the
TimerInterface with your MyClock class.

3. Modify your Timer class to accept this new TimerInterface type as its callback
object.

4. Test your new system.

5. (Optional) Create one or two additional classes that also implement the
TimerInterface. Start up all your systems simultaneously (the MyClock system and
any other classes you have created here). Observe polymorphism in action.

HINT: The effect is most noticeable if each class that uses a Timer object specifies a
unique delay and output.

S U N C E R T I F I C A T I O N

In the Certified Java Developer exam following the Certified Java Programmer exam, you
should be able to use abstraction and interfaces in the design of a system. You will be
expected to know the tradeoffs in creating and using these concepts. In the Certified Java
Programmer exam, you should be familiar with the idea that a class with an abstract
method must be declared to be abstract. Also, you should understand that if the subclass
does not have a concrete definition for each abstract method, then the subclass must also
be declared to be abstract. You should recognize that abstract classes and interfaces can
both be used as types.

162 Chapter 9—Interfaces and Abstract Classes

S U M M A R Y

This chapter covered how to use abstract classes and abstract methods. You also learned to
use interfaces to resolve multiple characteristics and demonstrate polymorphic behavior.
The topics in this chapter focused on teaching object-oriented programming.

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. There is an abstract class, Student, which has two methods. One, details(), prints
the students personal information. The other, debt(), returns the amount of
money owed by the student to the school. This abstract class is extended by three
other classes, Undergraduate, Graduate and Alumni. Based on this information,
what does the following code do and why?

Student[] debtors = new Student[10];

Undergraduate ug1, ug2, ug3, ug4;

Graduate g1, g2;

Alumni a1, a2, a3, a4;

double owed = 0;

// assume all variables are initialized.

debtors[0] = ug1;

debtors[1] = ug2;

// the other values are entered into the student array.

for (int i = 0; i < debtors.length, i++)

{

 owed += debtors[i].debt();

}

...

...

M A J O R T O P I C SM A J O R T O P I C S

10

Packages and Access Modifiers

Objectives .. 164

Pre-Test Questions... 164

Introduction .. 165

Packages and Access Modifiers 165

Comparison Between Java 1.1 And Java 2.................... 168

Information Hiding ... 169

Encapsulation .. 171

Sun Certification ... 173

Summary ... 174

Post-Test Questions ... 175

164 Chapter 10—Packages and Access Modifiers

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Compile and run a class with packages.

� Compare the Java 1.1 API and the Java 2 API.

� Describe the object-oriented programming principle of information hiding.

� Identify accessor and mutator methods.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What does a listener class do?

...

...

2. What does the Math class provide?

...

...

3. What does the Math.round (JRE)class method(JRE) do?

...

...

4. Which of the following from the collection class has unique elements?

A. Map

B. Set

C. List

Introduction 165

I N T R O D U C T I O N

You have already seen how classes allow users to group similar methods and data together
in a logical fashion. In a similar fashion, similar classes may be logically grouped together
ina package. A package allows a programmer to identify related classes. Along with the
idea of packages comes the idea of accessibility. Accessibilty determines what class may
access members of a given class. Proper use of accessibilty can promote good data
encapsulation. Encapsulation allows for writing modular code. Modular code prompts
code reuse and increased maintainability, and is thus a desirable goal for programmers.

P A C K A G E S A N D A C C E S S M O D I F I E R S

Recall that a method called public static void main(String[] args) was required to
run an application. This is a static class method called main with a void return value,
which takes an array of strings as its only parameter. The keyword public requires an
understanding of two Java concepts: packages and access modifiers.

Packages

Classes are grouped together because of a relationship which exists between the classes. In
Java, these groups of classes are called packages.

A package is created by placing the package statement followed by the name of the
package at the top of a Java class definition. The package statement must be the first line
of code in the class code. To place the Employee class in a package called payroll.info,
the first line of the file would be:

package payroll.info;

166 Chapter 10—Packages and Access Modifiers

Java places the packages into subdirectories by using the period (.) as a directory
separator. According to the above statement, the compiler would place Employee.class
in the info directory, a subdirectory of payroll. To compile the revised Employee class
and create the directories, enter the following:

javac -d . Employee.java

The -d option is followed by the directory path telling Java where to place the compiled
class. In this example, the directory path is dot (.), which indicates the current working
directory. To execute the Employee class, assuming that the class contains a main()
method, enter the following:

java payroll.info.Employee

To use the Employee class from another package, reference the class name with the
complete notation

payroll.info.Employee e = new payroll.info.Employee();

You can also make the Employee class visible by including an import statement before the
package designator:

import payroll.info.Employee; // Makes only Employee visible.

import payroll.info.*; // Makes all classes in directory

 // visible.

For this course, you will generally use the default package, which is the directory in which
the source files are stored.

The Java recommended method for naming a package is not difficult. Take the domain
name of your Internet address, reverse it, and add the name for the package; use periods
between the words since they will separate the folders. For example, Sun provides several
classes in the com.sun.java package.

Packages and Access Modifiers 167

Java packages are useful for the following reasons:

� Packages can be used in complex systems to group classes that provide
functionality to sections of the program. For example, a program might have a
database section, a GUI section, and a networking section. Each of these sections
can be assigned to its own package. Packages are often distributed as reusable
program modules that can be incorporated into other programs.

� Packages help to avoid naming conflicts with other classes. Including the directory
in the name of a class reduces the chance for conflict with other classes. Two
classes could have the same name, but reside in different directories.

� Packages allow access control to classes. This principle relates directly to access
modifiers.

Access modifiers

You can control the accessibility of a class and its members by using three keywords:
public, protected, and private. These three keywords represent the three access levels
supported by Java. A fourth access level, known as package, is assumed if no access
modifier is specified; however, this level is essentially the same as protected. Figure 10-1
shows the level of restriction placed on classes and their members by each keyword. The
least restrictive is public and the most restrictive is private.

Figure 10-1: Access levels

The access levels perform as follows.

Public: States that the method, member, or class is accessible from
any method in any other class.

Protected: Allows visibility to any methods of the class and sub-
classes or to any classes in the same package.

public privatepackageprotected

168 Chapter 10—Packages and Access Modifiers

Private: Restricts access of methods and members to the class in
which they are defined.

Package This is not an access keyword; however, the absence of an
access keyword denotes this access level. This level
restricts access to only classes defined in this package.

Any class member can be declared private, but a class can be declared private only if it is
an inner class. Both a class and a class member can be declared public, but a public class
may have private members. Private members are accessable only through accessor and
mutator methods.

C O M P A R I S O N B E T W E E N J A V A 1 . 1 A N D J A V A 2

There have been many changes from the Java 1.1 API to the Java 2 API, most of which
involve added and expanded packages. These packages provide large numbers of classes
and methods that add greatly to Java’s functionality. Some of the upgrades include
security enhancements, the Java Frame Class, the Collections API, serialization
enhancements, JDBC enhancements, and other performance enhancements. For a more
thorough description of the differences, refer to the Web page at Sun MicroSystem’s
website, <http://java.sun.com/products/jdk/1.2/docs/relnotes/features.html>.

Information Hiding 169

I N F O R M A T I O N H I D I N G

Controlling the amount of access another programmer will have to your code is very
important as you create reusable Java programs. It is good practice to give other
programmers only the required access privileges. By restricting access to a class’s members
and methods, the creator ensures the code’s integrety. Obscuring the inner workings of a
class is called information hiding. To implement infomation hiding in your Employee
class, make all the variables private. In the testing program, create accessor and mutator
methods that start with the words get and set.

class Employee

{

// Instance Variables

 private String name; // person's name

 private double height; // height in inches

 private int weight; // weight in pounds

 private int age; // age in years

 private double salary; // salary in dollars

}

// Instance Method

public void printAll()

{

 System.out.println("Name: " + name);

 System.out.println("Height: " + height);

 System.out.println("Weight: " + weight);

 System.out.println("Age: " + age);

 System.out.println("Salary: " + salary);

}

170 Chapter 10—Packages and Access Modifiers

Direct references to the variables can no longer be used outside of the class. For example,
rachael.name = "Rachael"; would not be allowed by the compiler. You must add
methods to get and set these private instance variables. An accessor is a method that
allows you to read a private variable. A mutator is a method that allows you to modify a
private instance variable. The following are examples of accessor and mutator methods:

// accessor

public String getName()

{

 return name;

}

// mutator

public void setName(String tmpName)

{

 name = tmpName;

}

By using private variables with accessor and mutator methods, you can control the
manner in which other programmers use the classes you create.

Encapsulation 171

E N C A P S U L A T I O N

Encapsulation is an object oriented concept closely related to information hiding. In an
ideal object-oriented world, the objects you create are accessible only by publicly available
accessor and mutator methods. The way these methods are implemented is completely
hidden from the user of that object. Encapsulation combines all of the data and methods
which represent an object into one class and controlles access to that information.

One advantage of encapsulation is reduced coupling. Code that uses an object of a well
defined class can continue to use that object even if the class is completely rewritten. For
example, suppose a database object changes the database engine it uses. As long as it
continues to support the public methods it makes available, nothing else will be adversely
affected. Other objects that may have been relying on the methods of that database object
may continue to do so. The only thing that has changed is the database object's
implementation of those methods, which is encapsulated, and therefore completely
hidden. This allows for the implementation of a system to be written for functionality,
and then rewritten for optimization.

Another use for encapsulation is security. If an object is tightly encapsulated and the only
access to that object is through its well-defined methods, the object is safer from
tampering.

172 Chapter 10—Packages and Access Modifiers

Figure 10-2 shows a diagram of object encapsulation.

Figure 10-2: Object encapsulation

The data and variables are protected from access by the methods. Use mutators to
validate data and to cause other data to be changed. Accessors allow class users to see only
the required data. If you study the development of JavaBeans, the convention of naming
these methods getVariable() and setVariable() will be important.

TECH NOTE:
As a general rule, design classes so that all the instance variables are declared
private, and the only access to those variables is through public methods. By
using accessors and mutators, you can maintain strong encapsulation.

Data 1
Data 2
Data 3
Data 4

Sun Certification 173

Exercise 10-1: Using encapsulation, accessors and mutators

In this exercise, you will write highly encapsulated objects. Highly encapsulated objects
should have their private data accessible only through the methods made publicly
available.

1. Declare all instance variables of the Employee class private.

2. Create a proper accessor and mutator for each of the private variables.

3. Guarantee that the rest of the class structure works (for example, the Physician
class). Make any necessary modifications.

4. Test the class structure in your SectionTwo class.

5. (Optional) Some classes are defined as read-only, meaning immutable. With your
understanding of accessors and mutators, create a subclass of Employee that is read-
only.

S U N C E R T I F I C A T I O N

You will be expected to know all the keywords used for methods and variables. The
keyword static designates a member as a class member. Only one copy will exist,
regardless of the number of objects.

The keyword abstract will be discussed in the next section. It denotes that the method
only has a specification, and must be overridden in a subclass.

The keyword synchronized will be introduced in the section on Threads to designate a
method that can be run by only one Thread at a time. If the synchronized method is a
class method, then only one synchronized class method can be run at a time. If it is an
instance method, only that method will be restricted. Synchronization will be discussed
in more detail later in the course.

In Java, the keyword native designates a method that is implemented in a platform-
dependent language. The native methods are beyond the scope of this course, and you
are not expected to know them for this exam.

174 Chapter 10—Packages and Access Modifiers

The keyword final has different meanings for methods and variables. When used with
variables, it designates that the value cannot be changed; other languages call this a
constant. The value of a final variable must be declared when the variable is created
because it cannot be changed. As with a method, the keyword final means that the
method cannot be overridden in a subclass. The keyword final for a class means that the
class cannot be subclassed.

There are more than forty keywords and reserved words in Java. You should know all of
them. While certain words, such as native, are not listed as test objectives, a good Java
programmers should at least know what each keyword does.

S U M M A R Y

This chapter discussed how to store Java classes using packages, and how to use access
modifiers to control access to classes and members. The Java 2 API was also introduced.
You also learned to protect programs with encapsulation. You will use the package
structure of the API, but for the duration of this course, put all the programs into a single
directory. When your bytecode is in one directory, there is only public and private
accessibility. Default and protected classes and members have the same visibility as
public in this case.

Post-Test Questions 175

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What does the protected access modifier do? What does the synchronized access
modifier do?

...

...

2. What does the following code return?

Math.round(Math.abs(Math.ceil(-9.4)));

...

...

3. Which collection allows for duplicate items and is ordered?

...

...

4. Which object uses a key value pair and does not allow dupilcate keys?

...

...

176 Chapter 10—Packages and Access Modifiers

M A J O R T O P I C SM A J O R T O P I C S

11

Swing Components

Objectives .. 178

Pre-Test Questions... 178

Introduction .. 179

What Is the AWT? ... 179

What Is Swing? .. 181

Basic Swing Components... 183

JavaBeans... 207

Sun Certification ... 208

Summary ... 208

Post-Test Questions ... 209

178 Chapter 11—Swing Components

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Distinguish between the capabilities of AWT and Swing.

� Identify the general organization of the Swing class structure.

� Define and use Swing widgets and containers.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is the AWT(JRE) (JRE)and what is it used for?

...

...

2. What is Swing and how is it different from the AWT?

...

...

3. Which Swing component would you need to use if you wanted to run Java in a
Web browser?

...

...

4. What is Java Beans technology?

...

...

Introduction 179

I N T R O D U C T I O N

One of the most convenient features of Java is the presence of a set of powerful GUI
(Graphical User Interface) components. The original Java language definition included
the AWT, which provided for many of the basic interface needs. However, with the
release of the Java 1.2 SDK, the Swing package was incorporated. Swing provides a much
more powerful and expansive set of user interface components. These Swing components
may be customized with minimal effort to look and behave as the programmer desires,
providing Java with a powerful set of Foundation Classes for building graphical
applications.

W H A T I S T H E A W T ?

When Sun Microsystems released the Java Development Kit (JDK) 1.0 several years ago,
Java came with a platform-independent graphical toolkit called the Abstract Windowing
Toolkit (AWT).

The AWT 1.0 package does not provide many prebuilt components, and creation of new
AWT 1.0 components is difficult. The only way to customize some prebuilt components
is to extend the original component and override methods to provide new functionality,
but many components cannot be customized. These restrictions make it difficult to
create large-scale GUIs using AWT 1.0, but it is useful for creating simple applets that
perform animation or other graphical effects.

The two greatest restrictions of AWT 1.0 are:

� Event handling in one method.

� Use of heavyweight components.

180 Chapter 11—Swing Components

Heavyweight components (peer pattern)

To make AWT 1.0 platform independently, Sun Microsystems chose to use native
graphical toolkits (toolkits available to the underlying operating system) to create all the
components in AWT. By using only those components available to the native graphical
toolkits on every Java-supported OS, Sun had to choose a basic subset of widgets that are
available to all supported platforms. This approach is the reason that few prebuilt
components come with AWT 1.0.

AWT 1.0 uses heavyweight components. When a programmer creates an AWT button in
Windows, the Java Virtual Machine actually creates a Windows button, a peer of the Java
button. This process is called the peer pattern. Each time an AWT component is created,
its native peer is created and displayed on the screen. To the programmer, it appears that
a Java button was created; however, the Java button is a simple interface to access the
methods available on the peer button. Similarly, when a button is created on Linux, a
native Linux button is created and accessed through the methods and properties available
to the AWT button API.

This peer pattern does not allow you to easily create complex user interfaces with
advanced components, since these components may not be available on the underlying
operating system's graphical toolkit.

AWT 1.1

AWT 1.1 comes with the JDK 1.1.x and higher, but still uses the peer pattern to create
components. This toolkit lacks powerful components, since it is using the same types
available in the AWT 1.0. The biggest difference between the JDK 1.0 and JDK 1.1 and
SDK 1.2.x is not in the AWT but in the way events are handled. Event handling will be
discussed in detail later in the course.

What Is Swing? 181

W H A T I S S W I N G ?

Swing is a package of lightweight components, called Java Foundation Classes (JFC). The
main difference between Swing and the AWT is the absence of the peer pattern. Swing
does not use native peers for every component in the API; instead, it uses 100-percent
Java GUI components. Swing components look the same across all supported platforms.
To use the Swing components, you must import the Swing class like this:

import javax.swing.*;

By not using platform-dependent peers or heavyweight components, Swing offers a much
richer selection of user-interface components. All Swing components are lightweight,
making the Swing API very large. All the classes are approximately 2 MB and require
considerable memory. These disadvantages are not serious, however, because JVMs are
becoming faster and more efficient. The Java 2 SDK 1.2.x is designed to address many
Java speed and stability problems.

All Swing components are written completely in Java, which allows the programmer
access to modify them easily; this latitude was not possible with AWT 1.1, which offered
no way to radically change the functionality or appearance of standard AWT
components. For example, you could not add an image to an AWT button. A separate
class had to be created by extending the Panel class and implementing all desired
functionality from scratch to create an image button. With Swing, you no longer need to
recreate; you can save work by extending existing components.

Swing allows programmers to customize existing components without having to subclass
them. This is accomplished by using event delegation and having many methods to
change the behavior of each component. Most of the effort involves learning the new
patterns and paradigms associated with Swing.

182 Chapter 11—Swing Components

Model View Controller (MVC) programming paradigm

One major difference between AWT 1.1 and Swing is the way in which they are written.
Every component in Swing is written using a modified version of the Model View
Controller (MVC) programming paradigm. Though difficult to understand at first, this
paradigm provides a formal way to create graphical object-oriented programs. In essence,
MVC provides three separate parts which are used to model a component:

� The model stores the data defining the component.

� The view displays the component from the data in the model.

� The controller handles user interaction with the component.

Because of the extensive design procedures required to make all three of these parts work
together, MVC programs generally have fewer bugs and are more extensible.

Basic Swing Components 183

B A S I C S W I N G C O M P O N E N T S

Because the Swing API is large, we will restrict our attention to the most commonly used
components that do not rely heavily on MVC methodologies and focus on the
components shown in Figure 11-1:

Figure 11-1: Portion of the Swing API

From this figure, we will focus on the following components in this course.

JComponent: the parent class to many Swing components

JLabel: displays simple text or images

JButton: a standard clicking button

javax.swing

java.applet

java.awt
Object

Component

Panel

Container

Window

JComponent

JScrollbar

JScrollPane

ImageIcon

JLabel

JPanel JTextComponent AbstractButton

JTextArea JTextF ield

JButton

Frame

JFrame JApplet ImageIcon

Applet

JFileChooser

184 Chapter 11—Swing Components

JTextField: for single-line text entry

JTextArea: for multiline text entry

JScrollBar: a standard scrollbar

ImageIcon: represents a graphic or icon. Note: ImageIcon is not a
component

JScrollPane: adds scrollable functionality to other components

JPanel: a non-stand-alone container

JFrame: a stand-alone container

JFileChooser: a system-independent file selection dialog

JApplet: a component to run Java in a Web browser

The preceding figure illustrates the Swing class structure. At the top of the Swing
hierarchy is the JComponent class. This class has been declared abstract, but it offers
numerous methods for your use. Many of the methods that offer high functionality are
inherited from JComponent.

TECH NOTE:
Do not confuse JComponent with the term component. The former refers to the
class JComponent, whereas the latter is a general term to refer to any of the
child classes of the Component class.

JComponents can be conceptually divided into three categories:

� Graphical widgets.

� Text components.

� Containers.

Basic Swing Components 185

Graphical widgets

Widgets are the graphical components with which users interact, such as JButtons,
JLabels, JScrollBars, and others. Typically, to use a widget of any sort, you need to know
the nature of its constructor. As you become accustomed to the various Java components,
you can often predict the nature of constructors before referring to the API since they are
intuitive.

Interestingly, every Swing component listed in Figure 11-1, except ImageIcon, is a
descendent of the Container class. This fact might seem to blur the line between a
Container (which can contain other components) and a widget (an interactive graphical
element). The ability for a Swing component to contain other components is part of its
power. In this chapter, you will explore some of the more common components in detail.

ImageIcon

An ImageIcon is not a JComponent; it extends Object directly. However, ImageIcon is
often used with other components, which is why we will examine it before discussing
other components. The ImageIcon implements the Icon interface and its functionality.
Therefore, anywhere you want to use an Icon, an ImageIcon would most likely suit your
needs.

Two of the more useful constructors of ImageIcon are:

public ImageIcon(String filename)

public ImageIcon(URL url) // Java has a URL class

186 Chapter 11—Swing Components

Because an ImageIcon is not a JComponent, it cannot be directly added to a component
that is expecting another JComponent. Therefore, it is necessary to add the ImageIcon to a
component that can receive an ImageIcon (or Icon), such as a JButton or JLabel. Consider
the following example:

class ImageIconStuff extends JFrame

{

 ImageIcon icon = new ImageIcon("btn_readme.gif");

 JLabel myLabel = new JLabel(icon);

 ImageIconStuff()

 {

 setupGUI();

 }

 private void setupGUI()

 {

 Container c = getContentPane();

 c.add(myLabel);

 setSize(100,100);

 setVisible(true);

 }

}

To run this code, you need to create a dummy class whose purpose is to instantiate the
necessary classes. The following is an example:

public class SectionThree

{

 public static void main(String[] args)

 {

 ImageIconStuff iStuff = new ImageIconStuff();

 }

}

Basic Swing Components 187

The output should resemble Figure 11-2.

Figure 11-2: Output for ImageIconStuff

From this point on, it will be assumed that the preceding code (or its equivalent) will be
used to instantiate any necessary classes.

JButton

To create a JButton, it must be instantiated in the same manner as any class. You will
probably want to have access to this JButton later, therefore it should be declared as an
instance variable. You need to know the nature of the constructor. It is logical to label the
JButton with a functional word such as Calculate or Exit. The JButton class has a
constructor that takes a String as a parameter. Additionally, recall that JButton is really a
subclass of JComponent, which is a subclass of Container. Therefore, it is possible to place
an ImageIcon in a JButton. Several useful constructors of the JButton can be used to
accomplish these goals:

public JButton(String text) // text only

public JButton(Icon icon) // icon only

public JButton(String text, Icon icon) // text and icon

188 Chapter 11—Swing Components

If you choose to display a JButton with both text and an icon, you will likely want to
position the text and icon in a particular manner. The JButton class offers methods to do
this:

JButton myButton = new JButton("Click",icon);

 // icon is previously instantiated

myButton.setHorizontalAlignment(JButton.LEFT);

 // text and icon are flush to the left

 // also RIGHT and CENTER can be used

myButton.setHorizontalTextPosition(JButton.LEFT);

 // text is placed to the left of the icon

 // also RIGHT and CENTER

myButton.setVerticalAlignment(JButton.TOP);

 // text and icon are flush with the top

 // also RIGHT and CENTER

myButton.setVerticalTextPosition(JButton.TOP);

 // text is flush with the TOP of the icon

 // also BOTTOM and CENTER

The following example displays a JButton with text and an icon. The default text and
icon positions are centered with text to the right.

class JButtonStuff extends JFrame // Jframes are covered shortly

{

 ImageIcon icon = new ImageIcon("btn_readme.gif");

 JButton myButton = new JButton("Click", icon);

 JButtonStuff () // Constructor

 {

 setupGUI();

 }

Basic Swing Components 189

 private void setupGUI() // a private internal method

 {

 Container c = getContentPane();

 c.add(myButton); // Take this code for granted for now.

 setSize(100,100);

 show();

 }

}

The output from this code should resemble Figure 11-3.

Figure 11-3: Output for JButtonStuff

Many holes exist in the code at this point. How this JFrame is being displayed has not
been explained, and the JButton is not active. Nothing should happen when you click it.

Remember that a JButton class is like any other class. It has properties and methods that
may be useful. These properties and methods are accessable using the dot notation, as in
the following:

class JButtonStuff extends JFrame

{

 JButton myButton = new JButton("A Button");

 JButtonStuff()

 {

 setupGUI();

 }

190 Chapter 11—Swing Components

 private void setupGUI()

 {

 myButton.setEnabled(false);

 Container c = getContentPane();

 c.add(myButton); // Take this code for granted for now

 setSize(100,100);

 setVisible(true);

 }

}

The output from the preceding code should resemble Figure 11-4.

Figure 11-4: New output for JButtonStuff

JLabel

JLabel facilitates the placement of text or images within your GUI. Its constructors follow
a similar pattern. One of its constructors takes an ImageIcon. This feature allows you to
place an ImageIcon almost anywhere as long as it is first placed in a JLabel. The syntax is
as follows:

public JLabel(String name) // text label

public JLabel(Icon) // icon label

Like the JButton, a constructor exists for an icon and text to be added upon instantiation
as well as a third parameter specifying the horizontal alignment. In addition, methods of
the JLabel class allow the following:

JLabel myLabel = new JLabel("My Label"); // text label

myLabel.setIcon(icon); // icon previously instantiated

Basic Swing Components 191

Methods can control the alignment of the icon and text of the JLabel independent of
instantiation:

myLabel.setHorizontalAlignment(JButton.LEFT);

// text and icon are flush to the left

// also RIGHT and CENTER

myLabel.setHorizontalTextPosition(JButton.LEFT);

// text is placed to the left of the icon

// also RIGHT and CENTER

myLabel.setVerticalAlignment(JButton.TOP);

// text and icon are flush with the top

// also BOTTOM and CENTER

myLabel.setVerticalTextPosition(JButton.TOP);

// text is flush with the TOP of the icon

// also BOTTOM and CENTER

Consider the following example:

class JLabelStuff extends JFrame

{

 ImageIcon myIcon = new ImageIcon("btn_readme.gif");

 JLabel myLabel = new JLabel("A Label");

 JLabelStuff()

 {

 setupGUI();

 }

192 Chapter 11—Swing Components

 private void setupGUI()

 {

 Container c = getContentPane();

 myLabel.setIcon(myIcon); // add the icon

 // place the text to the left of the icon

 myLabel.setHorizontalTextPosition(JLabel.LEFT);

 c.add(myLabel); // Take this code for granted for now

 setSize(100,100);

 show();

 }

}

The output should resemble Figure 11-5.

Figure 11-5: Output for LabelStuff

Basic Swing Components 193

JScrollBar

The JScrollBar class allows you to select from a range of values in a graphical manner.
What the constructor should be needs to be answered here also. You will ultimately refer
to the API, but trying to determine it on your own is a productive learning exercise.
JScrollBars are either horizontal or vertical. You must specify an initial value and a size for
the thumb for the JScrollBar. The thumb is an indicator or elevator button located on
both ends of the JScrollBar. It controls the JScrollBar, which will have to have its range of
values set. After the requirements are determined, consult a Java 2 API to find an
appropriate constructor. Examine the following example:

class JScrollBarStuff extends JFrame

{

 JScrollBar myScrollBar;

 myScrollBar = new JScrollBar(JScrollBar.HORIZONTAL,32,10,0,212);

 JScrollBarStuff ()

 {

 setupGUI();

 }

 private void setupGUI()

 {

 Container c = getContentPane();

 c.add(myScrollbar);

 setSize(200,50);

 show();

 }

}

194 Chapter 11—Swing Components

The output should resemble Figure 11-6.

Figure 11-6: Output of JScrollBarStuff

This constructor was sophisticated but appropriate and used the following format:

public JScrollBar(int orientation, int initial Value,

 int extent, int minValue, int maxValue)

// extent is the term used for the thumb

JTextField

A JTextField accepts an integer specifying the width according to the number of columns.
Another constructor will allow the default text to be set. The following is an example:

class JTextFieldStuff extends JFrame

{

 JTextField myTextField = new JTextField("Some Text",25);

 JTextFieldStuff()

 {

 setupGUI();

 }

 private void setupGUI()

 {

 Container c = getContentPane();

 c.add(myTextField);

 setSize(200,50);

 show();

 }

}

Basic Swing Components 195

The output should resemble Figure 11-7.

Figure 11-7: Output of JTextFieldStuff

Other possible constructors for JTextField are as follows:

public JTextField(String text, int columns)

public JTextField(); // default constructor

JTextArea

JTextArea has multiple uses such as a serving as a miniature editing window for entering
text or displaying information. The JTextArea constructor takes two integers that
represent the number of rows and the number of columns.

class JTextAreaStuff extends JFrame

{

 JTextArea myTextArea = new JTextArea(10,40);

 // specify number of rows and columns

 JTextAreaStuff()

 {

 setupGUI();

 }

 private void setupGUI()

 {

 Container c = getContentPane();

 c.add(myTextArea);

 setSize(200,200);

 show();

 }

}

196 Chapter 11—Swing Components

The output should resemble Figure 11-8.

Figure 11-8: Output of JTextAreaStuff

Some additional constructors for JTextArea are:

public JTextArea(String text)

public JTextArea(); // Default constructor

JScrollPane

One problem with the JTextArea is that it will not scroll to accommodate more text than
can be displayed on one screen. Additionally, if a loaded image exceeds the boundaries of
the container in which it is to be displayed, the container will not scroll. A JScrollPane
adds this scrolling functionality to a component.

Scrolling behavior can be added to a JTextArea. The easiest way is to instantiate a
JScrollPane class by passing the component you want to make scrollable in its constructor.
For example:

JTextArea ta = new JTextArea();

JScrollPane sp = new JScrollPane(ta); // Scrollbars now added

Basic Swing Components 197

This code will automatically add scrollbars to the JTextArea as needed. However, you
might want to tailor the behavior of the scrollbars. Customization is possible with a series
of methods available to the JScrollPane class such as:

// continuing with our example...

sp.setHorizontalScrollBarPolicy(int horizoptions);

// where horizoptions are:

// JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS

// JScrollPane. HORIZONTAL_SCROLLBAR_AS_NEEDED (The default)

// JScrollPane.HORIZONTAL_SCROLLBAR_NEVER

sp.setVerticalScrollBarPolicy(int vertoptions);

// where vertoptions are:

// JScrollPane.VERTICAL_SCROLLBAR_ALWAYS

// JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED (The default)

// JScrollPane.VERTICAL_SCROLLBAR_NEVER

Finally, do not add the JTextArea to your container. Just add the JScrollPane since it
contains the component you want to scroll.

// using the add() of your container...

c.add(sp);

198 Chapter 11—Swing Components

The following code is a complete example.

class JScrollPaneStuff extends JFrame

{

 JTextAreaStuff myTextArea = new JTextArea(10,40);

 JScrollPane myScrollPane = new ScrollPane(myTextArea);

 JScrollPaneStuff()

 {

 setupGUI();

 }

 private void setupGUI()

 {

 Container c = getContentPane();

 myScrollPane.setHorizontalScrollBarPolicy(

 JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

 myScrollPane.setVerticalScrollBarPolicy(

 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);

 c.add(myScrollPane);

 setSize(200,200);

 show();

 }

}

Basic Swing Components 199

The output should resemble Figure 11-9.

Figure 11-9: Output of JScrollPaneStuff

JFileChooser

A JFileChooser is a small pop-up window that allows a user to select a file name from the
local disk drive. The options for a JFileChooser allow it to be shown as an open file
chooser or a closed file chooser. However, the JFileChooser does not perform the actual
saving or loading of the file.

JFileChoosers are modal. If a modal component pops up, it blocks the user from
interacting with other GUI components until the modal component is closed. For a
JFileChooser, the modal feature can be disabled.

A programmer can instantiate a JFileChooser by using a default constructor or passing it a
path to a directory to display. If a default constructor is used, the initial directory will be
the current working directory. The ability of the JFileChooser is dependent on the local
working environment.

200 Chapter 11—Swing Components

Once instantiated, a JFileChooser can be displayed in either save mode or load mode with
the following commands:

JFileChooser chooser = new JFileChooser(); // instantiated

int returnVal1 = chooser.showOpenDialog(this); // open a file

int returnVal2 = chooser.showSaveDialog(this); // save a file

Several considerations should be noted here. The showOpenDialog(this) and
showSaveDialog(this) commands will visually display the JFileChooser. The keyword this is
necessary because a modal component is associated with a parent window or frame. In
this case, assume that this refers to the JFrame from which the JFileChooser was
instantiated. Also note that both methods return an int. These processes are necessary
because a user might select a file to save or load and then choose to cancel this operation.
Even though the user cancelled this operation, the file selected will still be returned
through the JFileChooser instance chooser. Even though a file name was chosen, the
program must verify that the user did not click the Cancel button. This verification can
be accomplished using some predefined constants of JFileChooser.

// continuation of above code to determine whether a Cancel

// button was clicked...

if(returnVal1 == JFileChooser.APPROVE_OPTION)

{

 // code to get the file name because the user selected

 // a file name and clicked the Load button

}

else if(returnVal1 == JFileChooser.CANCEL_OPTION)

{

 // code to respond to cancellation because the user

 // clicked the Cancel button

}

Basic Swing Components 201

If the user selected a file, then it is necessary to obtain the actual name of the selected file:

// modification of preceding code to obtain the file name...

String fileName = "";

if(returnVal1 == JFileChooser.APPROVE_OPTION)

{

 fileName = chooser.getSelectedFile().getName();

}

else if(returnVal1 == JFileChooser.CANCEL_OPTION)

{

 // code to respond to cancellation because the user

 // selected the Cancel button

}

The method getSelectedFile() of JFileChooser returns a file object, whereas getName() is a
method of the class File which returns the String representation of the file. A complete
example follows:

class JFileChooserStuff extends JFrame

{

 // specify the starting directory to be the root of

 // the C drive

 JFileChooser chooser = new JFileChooser("c:\\");

 String fileName = "";

 {

 setupGUI();

 }

202 Chapter 11—Swing Components

 private void setupGUI()

 {

 setSize(300,300); // just an empty frame right now

 show();

 int retVal = chooser.showOpenDialog(this);

 if(retVal == JFileChooser.APPROVE_OPTION)

 {

 fileName = chooser.getSelectedFile().getName();

 System.out.println("Selected file: " + fileName);

 }

 else if(retVal == JFileChooser.CANCEL_OPTION)

 {

 System.out.println("Operation cancelled");

 }

 }

}

The output should resemble Figure 11-10.

Figure 11-10: Output of JFileChooserStuff

Basic Swing Components 203

Containers

In the introduction of JButtons, it was mentioned that some holes existed in the code.
The declaration of the class used the word JFrame, and it was not yet explained how the
example classes became visible. These topicswill now be approaced, starting with an
explanation of the JFrame class and Containers in general.

In Java, components need to be placed into containers. Two types of containers exist: top-
level and lower-level. Top-level containers like JFrame and Window cannot be contained
in other containers. Lower-level containers like JPanel and JScrollPane can exist only
inside another container. Containers are commonly nested within other containers to
create complicated GUIs. JFrame and JPanel are the most frequently used Swing
containers.

JFrame

JFrame is the primary container used to create stand-alone applications. Objects of the
Window class do not contain borders or a title bar, both of which are typical
prerequisites for a Window application; therefore, Window objects are not used as often
as JFrames. Because JFrame is a class, it can readily be extended to inherit all of its
capabilities. In this example, the JFrameStuff class extends JFrame.

class JFrameStuff extends JFrame

{

 JFrameStuff ()

 {

 setupGUI();

 }

204 Chapter 11—Swing Components

 private void setupGUI()

 {

 setSize(150,150);

 // set the size in pixels

 setTitle("Practice");

 setCursor(Frame.HAND_CURSOR);// just an example;

 show();// make the Frame visible

 }

}

The output should resemble Figure 11-11.

Figure 11-11: Output of JFrameStuff

Excluding the title, the Jframe display size is 0 x 0 when it is first created. To see the
contents of a JFrame, you must invoke the setSize() and the setVisible() methods. This has
been done throughout the previous JFrame examples.

Adding components to a JFrame is not a direct process because the JFrame is a single
component that is created from a combination of several components. These components
are JRootPane, JLayeredPane, ContentPane, and GlassPane. This level of sophistication is
necessary for Swing to include such features as Multi-Document Interface (MDI) and
drag-and-drop. If you do not need to create an MDI application, then the approach is
straightforward. To add a component to a JFrame, it is first necessary to get the
ContentPane associated with the JFrame. From that point, add components to the
ContentPane. By adding components directly to the ContentPane, components are
indirectly added to the JFrame.

Basic Swing Components 205

Continue with the setupGUI() method, and attempt to add a single JButton to your
JFrame.

class JFrameStuff extends JFrame

{

 JButton myButton = new JButton("My Button");

 JFrameStuff ()

 {

 setupGUI();

 }

 private void setupGUI()

 {

 // First, associate the ContentPane with the JFrame

 Container c = getContentPane();

 // Next, add the JButton to this ContentPane;

 // the JButton is automatically added to the JFrame

 c.add(myButton)

 setSize(150,150);// Set the size in pixels.

 setTitle("Practice");

 setCursor(Frame.HAND_CURSOR);

 show();

 }

}

The output should resemble Figure 11-12.

Figure 11-12: Output of JFrameStuff

206 Chapter 11—Swing Components

JPanel

JPanels are simple Containers that do not pop up or appear as JFrames do. Instead, as
low-level containers, their job is to contain Components such as JButtons, JTextFields, or
other low-level Containers. JPanels also serve as convenient Components upon which to
draw graphics. In the following example, you will instantiate a JPanel, but its usefulness
will not become fully apparent until later.

The method add(), which is a method inherited from Container class allowing for
Components to be added to a Container.

class JPanelStuff extends JFrame

{

 JPanel myPanel = new JPanel();

 JPanelStuff ()

 {

 setupGUI();

 }

 private void setupGUI()

 {

 Container c = getContentPane();

 c.add(myPanel); // Add panel to frame; you will not

 setSize(125,125);// be able to see it

 setTitle("Practice");

 show();

 }

}

JavaBeans 207

Your output should resemble Figure 11-13

Figure 11-13: Output of JPanelStuff

J A V A B E A N S

The JavaBeans specification is a software component model similar in nature to
Microsoft’s COM. JavaBeans are individual components that are designed according to a
strict specification so that they can be easily dropped into an application using visual
tools. For example, a Web browser JavaBean would encapsulate all the functionality of a
Web browser into an easily manageable component within a visual programming
environment.In the same manner all Swing components, such as JButton or a JTextField,
are JavaBeans. Libraries of JavaBeans are available from various vendors. JavaBeans can be
used to rapidly develop sophisticated applications by bringing together several separately
developed components.

208 Chapter 11—Swing Components

S U N C E R T I F I C A T I O N

In the Sun Certified Java Programmer examination, TextArea, TextField, and List are all
tested. List implements the drop-down list box and a scrolling list box. The List
constructor requires the number of rows visible and a boolean declaring whether or not
multiple selections are allowed. After the List object is created, it is populated with the
addItem() method. The following is code for a List:

List myList = new List(2, false);

myList.addItem("Pizza");

myList.addItem("Spaghetti");

myList.addItem("Lasagna");

myList.addItem("Minestrone");

At this point, the List object myList would be added to a Container.

The following Component methods should be understood:

 setEnabled()
 setVisible()
 setSize()
 setForeground()
 setBackground()
 show()

S U M M A R Y

This chapter covered the Swing class structure and organization. Components were
defined, and an ImageIcon, a JButton, a JScrollBar, and other components were created.
Many containers were defined and created. These graphical Components can be
assembled in the next lesson to create complex graphical interfaces.

Post-Test Questions 209

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What does this piece of code do?

ImageIcon icon = new ImageIcon(“save_button.gif”);

JButton save = new JButton(icon);

...

...

2. What does a JScrollPane do?

...

...

3. What is a modal component?

...

...

210 Chapter 11—Swing Components

M A J O R T O P I C SM A J O R T O P I C S

12

Layout Managers

Objectives .. 212

Pre-Test Questions... 212

Introduction .. 213

What Is a Layout Manager? ... 213

Swing... 223

Graduating Task #3: Creating sophisticated layouts..... 230

Sun Certification ... 231

Summary ... 232

Post-Test Questions ... 232

212 Chapter 12—Layout Managers

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Define a layout manager.

� Set a layout manager for a Container.

� Effectively use each FlowLayout, GridLayout, BorderLayout, and BoxLayout.

� Nest Containers and Layout Managers to form more complex GUI layouts.

� Separate a complex design into its Component Containers and Layout Managers.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is a Layout Manager?

...

...

2. In which package are the Layout Managers located?

...

...

Introduction 213

I N T R O D U C T I O N

Java makes the process of creating graphical user interfaces, GUI’s, simple. In this chapter,
the tools used for controlling the look of GUI’s will be discussed. These Java tools are
known as Layout Managers.

Stop now and view the following video presentation on the Interactive
Learning CD-ROM (jCert):

Java Programming Fundamentals
Layout Manager

W H A T I S A L A Y O U T M A N A G E R ?

Containers can hold other Components, but they have no way to determine where these
Components should be placed. This task is performed by layout managers.

The Java API provides a variety of layout managers:

� BorderLayout

� BoxLayout

� CardLayout

� FlowLayout

� GridBagLayout

� GridLayout

� OverlayLayout

� ScrollPaneLayout

� ViewportLayout

Java also allows absolute positioning. That is, specifying a components position by pixel
count. However, this technique is discouraged due to variations in platforms and
resolutions. It is best to let a layout manager address cross-platform issues.

214 Chapter 12—Layout Managers

Layout managers can be frustrating. Although you may have an idea for the interface’s
presentation, layout managers must consider many elements before your Components are
actually displayed. Thus, you must often compromise.

This chapter will concentrate on FlowLayout, GridLayout, BorderLayout, and BoxLayout.
These four layout managers offer great functionality while remaining relatively easy to
use. Other layout managers provide greater flexibility and specific case functionality. For
instance, CardLayout can be used when a tabbed index system is needed. GridBagLayout
and OverlayLayout are the most flexible of the layout managers; however, they are
somewhat cumbersome to implement. ScrollPaneLayout and ViewportLayout are
component-specific managers.

FlowLayout

Each layout manager is named for its function. The FlowLayout centers Components on
each line in a flowing manner. A line is the length of the container and the height of the
tallest component on the line. Components are added to the right of the first component
and the line is centered again. When no additional room is available on that line of the
Container, the FlowLayout drops down to the next line. Figure 12-1 shows a Frame with
five buttons set to FlowLayout. The Frame has been resized several ways.

Figure 12-1: FlowLayout resized

What Is a Layout Manager? 215

To use the FlowLayout, follow these steps:

1. Set the layout of the Container using the setLayout(LayoutManager mgr) method
inherited from Container.

2. Add the Components using the method add(Component comp), also inherited from
Container. For example:

class FlowLayoutStuff extends JFrame

{

 JButton b1 = new JButton("Button 1");

 JButton b2 = new JButton("Button 2");

 JButton b3 = new JButton("Button 3");

 FlowLayoutStuff()

 {

 setupGUI();

 }

 private void setupGUI()

 {

 Container c = getContentPane();

 c.setLayout(new FlowLayout()); // Set the layout

 // before adding the

 c.add(b1); // components.

 c.add(b2); // Notice that you do not

 c.add(b3); // need a reference to the

 setSize(200,100); // FlowLayout object. This

 show(); // is typical.

 }

}

216 Chapter 12—Layout Managers

Your output should resemble Figure 12-2.

Figure 12-2: Output for FlowLayoutStuff

GridLayout

GridLayout is a layout based on a grid-like format. The constructor to the GridLayout
class requires the number of rows and columns necessary to form the grid. The grid is
filled in the following manner. A column with the specified number of rows is created
and Components are added from top to bottom. Columns will be added one at a time as
columns are filled. When a column is added, the components will be moved so that they
are positioned left to right and top to bottom in the order that they were added. The
number of rows will not be increased. If more Components are added than will fit,
another column will automatically be added. Component size is entirely controlled by the
grid, all components in the grid are the same size. As more components are added, the
size of each component is reduced. Using the following code, create a GridLayout that
has two rows and three columns.

class GridLayoutStuff extends JFrame

{

 JButton b1 = new JButton("Button 1");

 JButton b2 = new JButton("Button 2");

 JButton b3 = new JButton("Button 3");

 JButton b4 = new JButton("Button 4");

 JButton b5 = new JButton("Button 5");

 JButton b6 = new JButton("Button 6");

 GridLayoutStuff()

 {

What Is a Layout Manager? 217

 setupGUI();

 }

 private void setupGUI()

 {

 Container c = getContentPane();

 c.setLayout(new GridLayout(2,3));

 c.add(b1);

 c.add(b2);

 c.add(b3);

 c.add(b4);

 c.add(b5);

 c.add(b6);

 setSize(200,100);

 show();

 }

}

The output should resemble Figure 12-3.

Figure 12-3: Output for GridLayoutStuff

218 Chapter 12—Layout Managers

BorderLayout

BorderLayout is an unusual, but useful layout. In this case, the layout is divided into five
regions, as shown in Figure 12-4.

Figure 12-4: Example of BorderLayout

When components are added, you must specify the region in which the component is to
be added. To set a BorderLayout and add a Button, called myButton, to the West region,
enter the following code:

c.setLayout(new BorderLayout());

c.add(myButton, BorderLayout.WEST);

CENTER

E
A
S
T

W
E
S
T

SOUTH

NORTH

What Is a Layout Manager? 219

Important aspects of BorderLayout are:

� Only one component can be added to any one area. If more than one is added, you
will only see the last one added.

� The West and East areas will give the added component its preferred width, but will
change the component height.

� The North and South areas will give the added component its preferred height, but
will change the component width.

� The Center region will fill any area between the other four areas and a component
added to the Center will be this size. Center is the default are if none is specified.

� JFrames are, by default, set to BorderLayout. However, always explicitly set the
layout manager, instead of assuming one.

class BorderLayoutStuff extends JFrame

{

 JButton b1 = new JButton("Button 1");

 JButton b2 = new JButton("Button 2");

 JButton b3 = new JButton("Button 3");

 JButton b4 = new JButton("Button 4");

 JButton b5 = new JButton("Button 5");

 BorderLayoutStuff()

 {

 setupGUI();

 }

220 Chapter 12—Layout Managers

 private void setupGUI()

 {

 Container c = getContentPane();

 c.setLayout(new BorderLayout());

 c.add(b1, BorderLayout.NORTH);

 c.add(b2, BorderLayout.EAST);

 c.add(b3, BorderLayout.SOUTH);

 c.add(b4, BorderLayout.WEST);

 c.add(b5, BorderLayout.CENTER);

 setSize(300,300);

 show();

 }

}

Your output should resemble Figure 12-5.

Figure 12-5: Output of BorderLayoutStuff

What Is a Layout Manager? 221

BoxLayout

The BoxLayout is similar to the FlowLayout. However, a BoxLayout allows either a
horizontal or a vertical layout of components. In the following basic example, you will
create two JPanels and populate them with JButtons to demonstrate the BoxLayout.

class BoxLayoutStuff extends JFrame

{

 JPanel horPanel = new JPanel();

 JPanel vertPanel = new JPanel();

 JButton b1 = new JButton("b1");

 JButton b2 = new JButton("b2");

 JButton b3 = new JButton("b3");

 JButton b4 = new JButton("b4");

 JButton b5 = new JButton("b5");

 JButton b6 = new JButton("b6");

 BoxLayoutStuff()

 {

 setupGUI();

 }

 private void setupGUI()

 {

 Container c = getContentPane();

 c.setLayout(new GridLayout(1,2));

 horPanel.setLayout(new BoxLayout(horizPanel,BoxLayout.X_AXIS));

 // Set the h-layout

 vertPanel.setLayout(new BoxLayout(vertPanel,BoxLayout.Y_AXIS));

 // Set the v-layout

222 Chapter 12—Layout Managers

 horPanel.add(b1);

 horPanel.add(b2);

 horPanel.add(b3);

 vertPanel.add(b4);

 vertPanel.add(b5);

 vertPanel.add(b6);

 c.add(horPanel);

 c.add(vertPanel);

 setSize(400,150);

 setVisible(true);

 }

}

The output should resemble Figure 12-6.

Figure 12-6: Output of BoxLayoutStuff

H o riz o n ta l
B o x L a y o u t

V e rt ic a l
B o x L a y o u t

Swing 223

S W I N G

Swing introduces a new component called Box. This component is really just a container
with the BoxLayout already set. However, it does offer some useful methods and two
useful components: a strut and a glue.

Strut

A strut is an invisible component that allows either horizontal or vertical (fixed) spacing
to be added to layouts. Struts are created using a factory method of the Box class. For
example, a horizontal and vertical strut, each 15 pixels in width and height, are created as
follows:

Component hStrut = Box.createHorizontalStrut(15);

Component vStrut = Box.createVerticalStrut(15);

Add these components to your layout as usual to achieve the desired effect. Notice the
slight modification to the code regarding the struts; this approach is more typical:

class BoxLayoutStuff extends JFrame

{

 JPanel horPanel = new JPanel();

 JPanel vertPanel = new JPanel();

 JButton b1 = new JButton("b1");

 JButton b2 = new JButton("b2");

 JButton b3 = new JButton("b3");

 JButton b4 = new JButton("b4");

 JButton b5 = new JButton("b5");

 JButton b6 = new JButton("b6");

 BoxLayoutStuff()

 {

 setupGUI();

 }

224 Chapter 12—Layout Managers

 private void setupGUI()

 {

 Container c = getContentPane();

 c.setLayout(new GridLayout(1,2));

 horPanel.setLayout(new BoxLayout(horizPanel,BoxLayout.X_AXIS));

 // Set the h-layout

 vertPanel.setLayout(new BoxLayout(vertPanel,BoxLayout.Y_AXIS));

 // Set the v-layout

 horPanel.add(b1);

 horPanel.add(Box.createHorizontalStrut(15));

 horPanel.add(b2);

 horPanel.add(Box.createHorizontalStrut(15));

 horPanel.add(b3);

 vertPanel.add(b4);

 vertPanel.add(Box.createVerticalStrut(15));

 vertPanel.add(b5);

 vertPanel.add(Box.createVerticalStrut(15));

 vertPanel.add(b6);

 c.add(horPanel);

 c.add(vertPanel);

 setSize(400,150);

 show();

 }

}

The output should resemble Figure 12-7.

Figure 12-7: Output of BoxLayoutStuff (with struts)

Horizontal
struts

Vertical struts

Swing 225

Glue

A glue component allows control of the positions of other fixed-size components in the
layout. This invisible component expands to absorb extra space in the container. Glue
components will consume as much horizontal or vertical space as possible. Create
horizontal and vertical glue components using factory methods of the Box class:

Component hGlue = Box.createHorizontalGlue();

Component vGlue = Box.createVerticalGlue();

Add these components to the layout as usual, and note the effects:

class BoxLayoutStuff extends JFrame

{

 JPanel horPanel = new JPanel();

 JPanel vertPanel = new JPanel();

 JButton b1 = new JButton("b1");

 JButton b2 = new JButton("b2");

 JButton b3 = new JButton("b3");

 JButton b4 = new JButton("b4");

 JButton b5 = new JButton("b5");

 JButton b6 = new JButton("b6");

 BoxLayoutStuff()

 {

 setupGUI();

 }

226 Chapter 12—Layout Managers

 private void setupGUI()

 {

 Container c = getContentPane();

 c.setLayout(new GridLayout(1,2));

 horPanel.setLayout(new BoxLayout(horizPanel,BoxLayout.X_AXIS));

 // Set the h-layout

 vertPanel.setLayout(new BoxLayout(vertPanel,BoxLayout.Y_AXIS));

 // Set the v-layout

 horPanel.add(Box.createHorizontalGlue());

 horPanel.add(b1);

 horPanel.add(b2);

 horPanel.add(b3);

 vertPanel.add(Box.createVerticalGlue());

 vertPanel.add(b4);

 vertPanel.add(b5);

 vertPanel.add(b6);

 c.add(horPanel);

 c.add(vertPanel);

 setSize(400,150);

 show();

 }

}

The output should resemble Figure 12-8.

Figure 12-8: Output of BoxLayoutStuff (with glue)

Horizontal
glue

Vertical glue

Swing 227

Combining layouts

To create a specific GUI in spite of the apparent limitations of each layout, use a
combination of layouts. This is nesting. Combine your knowledge of the layout managers
with the use of different containers to achieve sophisticated results. As an example, try to
duplicate the layout shown in Figure 12-9.

Figure 12-9: Example of a sophisticated layout

You can approach this task in multiple ways. This layout strongly resembles a
BorderLayout with three JButtons in the West region, and a fourth JButton in the Center
region. However, if you add multiple JButtons in any one region, only the last JButton
will be displayed. Therefore, you must further separate the problem. The West region
resembles a GridLayout with three rows and one column. You can summarize the solution
as follows:

1. Create a JFrame with a BorderLayout.

2. Create a JPanel with a GridLayout of three by one, and add three JButtons.

Button 4

Button 1

Button 2

Button 3

228 Chapter 12—Layout Managers

3. Add the JPanel to the West region.

4. Add the fourth JButton to the Center region.

class NestedLayoutStuff extends JFrame

{

 JButton b1 = new JButton("Button 1");

 JButton b2 = new JButton("Button 2");

 JButton b3 = new JButton("Button 3");

 JButton b4 = new JButton("Button 4");

 JPanel west = new JPanel();

 NestedLayoutStuff()

 {

 setupGUI();

 }

 private void setupGUI()

 {

 Container c = getContentPane();

 c.setLayout(new BorderLayout());

 west.setLayout(new GridLayout(3,1));

 west.add(b1);

 west.add(b2); // Add Buttons to the JPanel

 west.add(b3);

 c.add(BorderLayout.WEST, west); // Add JPanel

 c.add(BorderLayout.CENTER,b4);

 setSize(250,150);

 show();

 }

}

Swing 229

Your output should resemble Figure 12-10.

Figure 12-10: Output of NestedLayoutStuff

Other possibilities exist. Perhaps a BoxLayout in the West JPanel, or a FlowLayout, would
be more accommodating. The layout managers offer a great deal of flexibility and
creativity. Remember to test your layouts under various conditions, such as different
screen resolutions and operating systems.

230 Chapter 12—Layout Managers

G R A D U A T I N G T A S K # 3 : C R E A T I N G S O P H I S T I C A T E D
L A Y O U T S

In this exercise, you will create a moderately sophisticated GUI which will serve as the
front end for a painting program that is similar to the Paint program in Windows. You
will develop this painting program over the next several sections, the general form is
provided here. Experiment with layout techniques to find the most suitable solution.

1. Create a GUI as shown in Figure 12-11. Ultimately, this GUI will become fully
functional with the ability to draw in many predefined and user-defined colors.
Note that this entire GUI consists of one JFrame, four JPanels, five JButtons, and
three JScrollBars.

Figure 12-11: Model GUI

Five JButtons

Two JPanels

The large (center)
JPanel will serve
as the drawing
surface.

The smaller JPanel
(beneath the
JButtons) will
always display the
current drawing
color.

Three JScrollBars
Each JScrollBar will be able
to select an integer from 0 to
255, ultimately to create a
color based on an RGB value.

Top: Red JScrollBar
Middle: Green JScrollBar
Bottom: Blue JScrollBar

JFrame

Sun Certification 231

2. (Optional) Change the background colors of the three JScrollBars to red, green, and
blue to their representative colors.

3. (Optional) Change the background colors of the red, green, blue, and black
JButtons to their representative colors.

4. (Optional) Change the background color of the small JPanel to black, which is the
default drawing color in Java.

5. (Optional) Add three JLabels to the left of the three JScrollBars, labeling the color
that each JScrollBar represents.

S U N C E R T I F I C A T I O N

Three layouts are covered on the Java Certified Programmer exam: BorderLayout,
FlowLayout, and GridLayout. Additional aspects of the layouts should be reviewed.

� Remember that some of the layouts resize Components, but only some
Components can be resized. A Button, Label, and TextField can be stretched if
necessary, but the Checkbox component cannot be stretched.

� Each type of Container has a default LayoutManager. These are listed in
Table 12-1.

� Other layout managers can be employed in a Container using the setLayout()
method of Container (and its derived classes). The Panel uses the FlowLayout,
therefore JApplet will also use the FlowLayout by default, because JApplet is derived
from Panel.

Table 12-1: Default LayoutManagers

Container Default LayoutManager
JFrame BorderLayout

JPanel FlowLayout

Dialog BorderLayout

Window BorderLayout

Japplet FlowLayout

232 Chapter 12—Layout Managers

S U M M A R Y

FlowLayout, GridLayout, BorderLayout and BoxLayout are the four most common layout
managers used in Java. A common techniques of nesting Containers and layout managers
is to create more sophisticated designs. Each layout manager has a unique affect on
Components and Containers. These methods and affects should be reviewed before
continuing. You will learn how to place shapes, text, and images onto a graphical
Component in the next chapter.

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. Which Layout Manager is used by (JRE) panels (JRE)default?

...

...

2. How many placement fields are there in the BorderLayout and what are they?

...

...

3. Which Layout Manager will not change the size of its components?

...

...

M A J O R T O P I C SM A J O R T O P I C S

13

Graphics

Objectives .. 234

Pre-Test Questions... 234

Introduction .. 235

What Are Graphics in Java?.. 235

Graphics Class ... 236

Sun Certification ... 253

Summary ... 253

Post-Test Questions ... 254

234 Chapter 13—Graphics

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Identify the AWT class structure for graphics.

� Explain how the Graphics class is realized through the graphics context.

� Gain access to a Container's graphic context by overriding the paint(Graphics g)
method.

� Use methods of the Graphics class via the graphics context, including
drawString() and drawRect().

� Effectively use the Color and Font classes.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. Where are Graphics in Java?

...

...

2. Which Java class would you use to to draw text and shapes on the screen?

...

...

Introduction 235

3. About how many different colors is Java capable of displaying?

...

...

4. Why are there only a few fonts available to all Java Virtual Machines?

...

...

I N T R O D U C T I O N

Almost all modern programs contain some sort of graphics or animation. In response, the
Java Graphics class provides many methods to a programmer. These methods include
tools to draw almost all basic shapes. These basic shapes can be combined to create
complicated designs.

With the introduction of Java 1.2, the Graphics class was extended by Graphics2D. This
new class provides the programmer more sophisticated control over geometry, coordinate
transformations, color management, and text layout. The tools are now advanced enough
that a programmer can create and animate images with relative ease.

W H A T A R E G R A P H I C S I N J A V A ?

Java graphics can be thought of as any image drawn onto any Java component. These
components include all AWT Components and all Swing Components. Java provides a rich
set of classes to create graphics. In this chapter, four classes in the AWT package that are
useful for graphics will be discussed: Graphics, Graphics2D, Color, and Font.

236 Chapter 13—Graphics

G R A P H I C S C L A S S

The Graphics class is an abstract class. As a cross-platform language, Java cannot
implement the necessary hard code to properly handle every graphics system available.
For this reason, the Java Virtual Machine must implement this abstract class. The
various implementations of the Graphics class will be handled properly as long as a
programmer adheres to the methods provided.

Abstract classes cannot be instantiated. Therefore, programmers must request a
Graphics object from a Component, which is accomplished by using a method of the
form:

component.getGraphics();

This method is defined in Component and returns a Graphics object. Therefore, any class
that is a subclass of Component can be drawn upon. The functionality of the Graphics
class can be accessed even though it is an abstract class.

Programmers actually work with the graphics context, which is the AWT implementation
of the methods defined in the Graphics class. In essence, the graphics context is a
wrapper representing the surface of a component. Drawing is never performed directly to
the surface of a component but to the graphics context, which draws to the surface of the
component.

Two methods are used to paint components. If a component is a member of the Swing
package, the method is

public void paintComponent(Graphics g)

otherwise, the method is

public void paint(Grapics g)

Graphics Class 237

The graphics context can be requested from the Component or Image with which you want
to work. Usually, you will override the painting method for that object. The following
code provides a simple example.

public void paintComponent(Graphics g)

{

 super.paintComponent(g);// This will redraw the background

 //color; otherwise your component will be transparent, and

 // might draw to the component beneath it

 // Additional code for drawing would be included

}

If the component to which you want to paint is a subclass of Container alone, then you
can override the following method:

public void paint(Graphics g)

{

 super.paint(g); // Frame might have problems refreshing

 // its onscreen image without calling its super method

 // first

 // Additional code to do some drawing...

}

238 Chapter 13—Graphics

Figure 13-1 lists the many classes available in the AWT for creating graphics. Some of the
methods made available in the Graphics class itself.

Figure 13-1: AWT class hierarchy (graphics section)

Color

O
b
j
e
c
t

Cursor

Dimension

Font

FontMetrics

Graphics

Image

Insets

MediaTracker

Point

Polygon

Rectangle

Toolkit

Graphics Class Methods

Method Description
draw3DRect() Draws a 3-D rectangle

drawArc() Draws an arc

drawLine() Draws a line

drawOval() Draws an oval

drawPolygon() Draws a polygon connecting point
to point

drawPolyline() Draws a line connecting point to
point

drawRect() Draws a rectangle

drawRoundRect() Draws a rounded-corner rectangle

fill3DRect() Draws a filled 3-D rectangle

fillArc() Draws a filled arc

fillOval() Draws a filled oval

fillPolygon() Draws a filled polygon

fillRect() Draws a filled rectangle

fillRoundRect() Draws a filled rectangle with
rounded corners

Abstract Class

Class

Graphics Class 239

Typically, to create graphics (either text or shapes), the paintComponent(Graphics g)
method, derived from JComponent, will be overridden. The coordinate system used to
position graphics is consistent with computer graphics coordinates of the form (X,Y)
where the origin (0,0) is the upper-left corner of the component. X increases by one for
every pixel moved down from the origin.

Figure 13-2: Coordinate system for positioning graphics

You can perform the Hello World program graphically with the following code:

import java.awt.*;

import java.awt.event.*;

import java.awt.Window.*;

import javax.swing.*;

class PaintingStuff extends JPanel

{

 PaintingStuff ()

 {

 // empty

 }

 // The AWT passes the graphic context of the frame as a

 // parameter to the paint method.

(0,0)

(x,y)

240 Chapter 13—Graphics

 public void paintComponent(Graphics g)

 {

 super.paintComponent(g); // Avoid transparency issues.

 g.setColor(Color.blue); // The foreground must be

 // different from the background, or you will not see

 // the result (we will discuss this topic shortly).

 g.drawString("Hello World",70,100);

 }

}

Of course, this JPanel must be added to a JFrame. For example:

import java.awt.*;

import java.awt.event.*;

import java.awt.Window.*;

import javax.swing.*;

class StartPaintingStuff extends JFrame

{

 PaintingStuff pStuff = new PaintingStuff();

 StartPaintingStuff()

 {

 setupGUI();

 }

 private void setupGUI()

 {

 Container c = getContentPane();

 c.setLayout(new BorderLayout());

 c.add(BorderLayout.CENTER,pStuff);

 setSize(200,200);

 setVisible(true);

 }

}

Graphics Class 241

The output should resemble Figure 13-3.

Figure 13-3: Output of PaintingStuff

Overriding paintComponent(Graphics g) is usually the preferred method for accessing
the graphics context of a JComponent. Remember that for a Frame, the method is
paint(Graphics g). Sometimes programmers will try to capture the graphics context
used elsewhere in their code by using an inherited method of Component called
getGraphics(). This way, the programmer is not forced to remain in the specific
inherited method.

242 Chapter 13—Graphics

This technique can be difficult. The graphics context is generated by the AWT
spontaneously, and maintaining a reference to it may cause problems later. If you use this
technique, be sure to attain a fresh reference to the graphics context each time you use it.
For example, you could run the Hello World program without committing to overriding
a specific method as follows:

import java.awt.*;

import java.awt.event.*;

import java.awt.Window.*;

import javax.swing.*;

class PaintingStuff extends JPanel

{

 PaintingStuff ()

 {

 // empty

 }

 // The AWT passes the graphics context of the frame as a

 // parameter to the paint method.

 private void drawSomething()

 {

 Graphics g = getGraphics(); // Request the Graphics context.

 g.setColor(Color.red);

 g.drawString("Hello World",70,100);

 }

}

Graphics Class 243

The drawSomething() method can be invoked as follows:

import java.awt.*;

import java.awt.event.*;

import java.awt.Window.*;

import javax.swing.*;

class StartPaintingStuff extends JFrame

{

 PaintingStuff pStuff = new PaintingStuff();

 StartPaintingStuff()

 {

 setupGUI();

 pStuff.drawSomething();

 }

 private void setupGUI()

 {

 Container c = getContentPane();

 c.setLayout(new BorderLayout());

 c.add(BorderLayout.CENTER,pStuff);

 setSize(200,200);

 setVisible(true);

 }

}

The result is almost identical to the previous example; the only difference is the manner
in which the graphics context was obtained.

244 Chapter 13—Graphics

One surprising aspect is the frequency with which the AWT calls the paint(Graphics g)
method. Each time you drag, resize, cover, or uncover some part of a window, the AWT
will update its graphics context and automatically call the paint(Graphics g) method.
The paint(Graphics g) method should contain all the code to redraw the entire
component. You may also force the AWT to call paint(Graphics g) if data affecting the
output of your program has changed. In this case, a call to repaint() will force the AWT
to call the component's paint(Graphics g) method. The repaint() method performs
some updating but ultimately calls the paintComponent(Graphics g) or the
paint(Graphics g) method.

TECH TIP:
Noted that refreshing of the screen is not guaranteed. The virtual machine will
repaint the screen as soon as possible; however, repainting is controlled strictly.
The reason is to prevent painting from consuming all of the processor cycles.

Java programmers should become comfortable with all the methods available in the
Graphics class. The following sub-sections will introduce some of these methods.

drawString()

The method drawString() in the Graphics class allows you to draw text using the graphics
context’s current font and color. As seen in the code examples throughout this chapter,
you can call the drawString() method in the following manner.

public void paint(Graphics g)

{

 g.drawString("Hello World",70,100);

}

The first parameter, Hello World, refers to the string that is to be painted. The second
and third parameters refer to the desired X and Y position on the coordinate system.

drawLine()

Sometimes the Graphics class will need to be used to draw a line or a group of lines,
which can be accomplished by calling the drawLine() method. The following applet is an
example using drawLine(), to draw the word java.

Graphics Class 245

import javax.swing.*; //import Applet class

import java.awt.Graphics; //import Graphics class

public class DrawLineTest extends JApplet

{

 public void paint(Graphics g)

 {

 g.drawLine(45, 75, 25, 75);

 g.drawLine(35, 75, 35, 115);

 g.drawLine(25, 115, 35, 115);

 g.drawLine(55, 75, 55, 115);

 g.drawLine(65, 75, 65, 115);

 g.drawLine(55, 75, 65, 75);

 g.drawLine(55, 85, 65, 85);

 g.drawLine(75, 75, 80, 115);

 g.drawLine(80, 115, 85, 75);

 g.drawLine(95, 75, 95, 115);

 g.drawLine(105, 75, 105, 115);

 g.drawLine(95, 75, 105, 75);

 g.drawLine(95, 85, 105, 85);

 }

}

This example shows how drawLine() draws a line, using the current color, between the
point specified by the first two x-y parameters and the point specified by the second two
x-y parameters.

drawRect()

If you want to draw a rectangle around the text, you can implement one of the methods
available to the Graphics class such as drawRect().

import java.awt.*;

import java.awt.event.*;

import java.awt.Window.*;

246 Chapter 13—Graphics

import javax.swing.*;

class PaintingStuff extends JPanel

{

 PaintingStuff()

 {

 setupGUI();

 }

 public void paintComponent(Graphics g)

 {

 super.paintComponent(g);

 g.setColor(Color.blue);

 g.drawString("Hello World",70,100);

 g.drawRect(50,50,100,100);

 }

}

Graphics Class 247

Your output should resemble Figure 13-4.

Figure 13-4: Output of PaintingStuff (with rectangle)

drawImage()

You can also draw an entire image using the drawImage(). An example of how this can be
accomplished is in the following code.

import java.applet.Applet;

import java.awt.*;

import javax.swing.*;

public class Test1 extends JApplet

{

 private Image i;

 public void init()

 {

 i = getImage(getDocumentBase(),"9a.jpg");

 }

248 Chapter 13—Graphics

 public void paint(Graphics g)

 {

 g.drawImage(i, 0, 0, this);

 }

}

The drawImage() method in this example attempts to draw the Image i at the specified
position (0,0) with the ImageObserver Test1. For the level of this discussion, the image
observer can be thought of simply as the component on which to display the image. The
image is obtained from a file using a call to getDocumentBase() which returns the path to
the image 9a.jpg. The drawImage() method returns immediately in all cases, even if the
image is not yet loaded, in which case the drawImage returns a boolean with the value
false. Checking the return value of this method is recommended. If the value is false,
the program should wait for the image to be drawn. Otherwise, as more of the image
becomes available, the process that draws the image will alert the specified image
observer, and the component will be updated.

Color class

In the perspective of object-oriented programming, color is an object, which can be used
as a property of another object. Therefore, Java contains the Color class. Color can be
determined in many ways, such as an RGB value by using the method Color(int R, int
G, int B) or by simply specifying the color: Color.red. Once set, the color can be
adjusted using methods such as Color.brighter(). Color fits nicely into the framework
of an object.

A Color object may be readily used to change the current color of the graphics context
from its default color, black. The following code demonstrates three ways to set the color
of the graphics context using the setColor() method of the Graphics class and a properly
created Color object.

Graphics Class 249

public void paintComponent(Graphics g)

{

 super.paintComponent(g);

 g.setColor(Color.red);

 // M1 – using a constant.

 g.setColor(new Color(255,0,0));

 // M2 – using a constructor.

 g.setColor(new Color(256*256*255));

 // M3 – using a constructor.

}

And now the code:

import java.awt.*;

import java.awt.event.*;

import java.awt.Window.*;

import javax.swing.*;

class PaintingStuff extends JPanel

{

 PaintingStuff ()

 {

 setupGUI();

 }

 public void paintComponent(Graphics g)

 {

 super.paintComponent(g);

 g.setColor(Color.red);// M1

 g.drawString("Hello World",70,100);

 g.setColor(new Color(200,100,200));// M2

 g.drawRect(50,50,100,100);

 }

}

250 Chapter 13—Graphics

Your output should resemble Figure 13-5.

Figure 13-5: Output of PaintingStuff (with colors)

Font class

The Font class is also available in Java and it works much like the Color class. A Font is
defined by its name (Helvetica, Times Roman, etc.), its style (bold, italic, plain, etc.),
and its size (10,12,14, etc.). The constructor of a Font object will accept these
parameters.

public void paintComponent(Graphics g)

{

 super.paintComponent(g);

 g.setFont(new Font("Helvetica", Font.BOLD, 15));

}

As is often the case with Java, you must consider how a Font object translates from one
system to another. To successfully cross platforms, Java makes the following Fonts
available to any JVM:

� Serif

� Sans Serif

� Monospaced

Graphics Class 251

� Dialog

� Dialog Input

You are not limited to these fonts. The Toolkit class contains a method that will retrieve
all the fonts available to the system.

The final modification to your practice code will set a font.

import java.awt.*;

import java.awt.event.*;

import java.awt.Window.*;

import javax.swing.*;

class PaintingStuff extends JPanel

{

 PaintingStuff ()

 {

 setupGUI();

 }

 public void paintComponent(Graphics g)

 {

 super.paintComponent(g);

 g.setColor(Color.red);

 g.setFont(new Font("Serif", Font.BOLD +

 Font.ITALIC, 20));

 g.drawString("Hello World",70,100);

 g.setColor(new Color(200,100,200));

 g.drawRect(50,50,100,100);

 }

}

252 Chapter 13—Graphics

Your output should resemble Figure 13-6.

Figure 13-6: Output of PaintingStuff (with fonts)

Exercise 13-1: Drawing to your Scribble JFrame

In this exercise, you will draw to the surface of your JFrame by overriding the appropriate
method. Interestingly, you are drawing to the surface of the JFrame, not the JPanel. How
do you see the result if the JPanel is on top of the JFrame? In Swing, components are
transparent by default. In effect, you are looking through the JPanel to see the surface of
the JFrame, as shown in Figure 13-7.

Figure 13-7: Your JFrame

Your red rectangle
should appear here

Sun Certification 253

1. Draw a filled red rectangle in the top center of the JFrame by overriding the
appropriate method to obtain a reference to the graphics context.

2. (Optional) Add 3-D borders to your red rectangle by using the Graphics method
of draw3DRect(int x1,int y1,int width, int height, boolean raised). Try to
achieve the visual effect of a raised button.

3. (Optional) Adjust the fonts on the JButtons to make them aesthetically appealing.

S U N C E R T I F I C A T I O N

The methods of the Graphics class that appear on the exam are: drawString(),
drawLine(), drawRect(), drawImage() drawPolygon(), drawArc(), fillRect(),

fillPolygon(), and fillArc(). The drawRect(), fillRect(), drawImage(), and
drawArc() methods all need the rectangle in which the graphical element will be drawn.
These methods require the x and y coordinates of the upper-left corner of the rectangle
and the width and height of the rectangle. The coordinate system used in Java was
discussed in this chapter, and all coordinates are given in pixels. The fillPolygon() and
drawPolygon() methods require a set of x and y coordinates for each point of the
polygon, again using pixels in the same coordinate system.

S U M M A R Y

This chapter covered some of the techniques used to obtain the graphics context of a
component, as well as some of the methods of the Graphics class. You also learned about
the Color and Font classes and that the Cursor class works similarly to Color and Font.
The ideas discussed in this chapter create the visual aspects of a Java program.

254 Chapter 13—Graphics

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. Where is the origin in the coordinate system used in Java?

...

...

2. What would output would this piece of code produce?

import javax.swing.*;

import java.awt.*;

class PaintStuff extends JFrame

{

private Container c;

PaintStuff()

{

setupGUI();

drawSomething();

}

private void drawSomething()

{

Graphics g = getGraphics();

g.setColor(Color.blue);

for(int i = 0; i < 75; i++)

{

g.drawRect(i, i, i * 2, i * 2);

}

}

Post-Test Questions 255

private void setupGUI()

{

c = getContentPane();

c.setLayout(new BorderLayout());

setSize(200, 200);

setVisible(true);

}

}

...

...

3. What attributes would the following code give to a font?

g.SetFont(new Font(“SansSerif”, Font.ITALIC, 20);

...

...

4. Why would you want to use this code in a program that used graphics?

public static void main(String args[])

{

GraphicApp app = new GraphicApp();

app.addWindowListener(new WindowAdapter()

{

public void windowClosing(WindowEvent e)

{

System.exit(0);

}

});

}

...

...

256 Chapter 13—Graphics

M A J O R T O P I C SM A J O R T O P I C S

14

The Delegation Model

Objectives .. 258

Pre-Test Questions... 258

Introduction .. 259

What Is an Event? .. 259

SDK 1.3 Event Handling... 260

Sun Certification ... 274

Summary ... 274

Post-Test Questions ... 275

258 Chapter 14—The Delegation Model

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Explain the event delegation model conceptually.

� Create listener classes that can respond to events.

� Register listener classes with their Component sources.

� Capture events and deal with them in meaningful ways.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is an event?

...

...

2. What kinds of user actions can generate events?

...

...

Introduction 259

I N T R O D U C T I O N

When creating a program that runs within a windowing environment, one of the basic
necessities is event handling. Dealing with things like mouse and button clicks, and
window activation and deactivation is essential to the creation of a graphical user
interface. A program in this type of environment must constantly listen for events to
occur, and, when they do, process them appropriately. The process through which this is
done in Java is outlined in the AWT event model and is referred to as the Delegation
Model. In this chapter, you will learn the basics of the Delegation Model including what
an event is, and and how to implement it within a program.

The basic idea behind event handling is that there are event objects, event sources and
event listeners. Each event listener is told for which type of event object to listen and
when a source creates and broadcasts an event object of that type, the event listener
performs its specified task.

W H A T I S A N E V E N T ?

An event can be described as something that happened or occurred. This definition,
though basic, is appropriate. To describe an occurrence relative to Java, ask the following
questions:

� What caused the event? Was it a JButton, a JTextField, or a keystroke?

� What was the exact nature of the event? Was a JButton pressed or was it released?
Was a mouse clicked once, or was it double-clicked?

� Is additional information available about the event? If a mouse button was clicked,
where was it clicked (the coordinates)? If a key on the keyboard was pressed, was it
in conjunction with the CTRL key or ALT key?

260 Chapter 14—The Delegation Model

Based on these questions, you can surmise that when an event occurs in Java, it creates an
event object. This event object contains all the information you need to properly process
the event:

� The source of the event (which Component generated it).

� The ID of the event (e.g., a mouse down or mouse up).

� Other important information based on the type of event (such as the label of the
JButton that generated the event).

S D K 1 . 3 E V E N T H A N D L I N G

The JDK 1.1 model was an advance in elegance, scalability and efficiency over the 1.0
method, and remains unchanged in SDK 1.3. The JDK 1.1/SDK 1.3 model is based on a
concept called the event delegation model.

TECH NOTE:
Although the enhanced event delegation model was introduced in JDK 1.1,
this book will refer to it as belonging to the SDK 1.3.

The event delegation model relies on the concept of event sources (objects that generate
events—often Components) and event listeners (objects that receive Events). Some
questions that arise in relation to the event delegation model are:

� How does the event source generate the Event object?

� How does the event source know where to send the Event object?

� How does a listener prepare to receive the Event?

� What does the listener do once the Event is received?

The following sections will address these questions systematically.

SDK 1.3 Event Handling 261

Generating the event object

An Event object is generated automatically by actions such as a user moving the mouse or
clicking a button. Although you have the ability to generate your own Events, you need
not generate Events for standard AWT components (although this is done frequently with
JavaBeans).

One disadvantage of the 1.0 model was that the Event object generated was too general
(only one type of Event object was generated). The 1.3 model takes a different approach.
The 1.3 model generates many different types of Events depending on the source. For
example, Windows generate WindowEvents, and JCheckboxMenuItems generate ItemEvents.
Some less obvious examples are JButtons and JTextFields generating ActionEvents.

Once you know which sources generate which Events, the question remains as to how
the source knows where to send the Event object so it can get the proper response?

Sending the event object to the listener

The Event object that the source object creates must be sent to a listener object. How
does it know which listener to send the Event object to? What if more than one listener is
available? The source must register the listener to which it wants to send the Event object.
This arrangement is common and can be demonstrated with ordinary events.

If you (the listener) want to receive a subscription to Time magazine (the Event object)
from the publisher (the event source), what would you do? You would ask the publisher
to put you on its mailing list (register yourself with the source). Then, when the publisher
releases the next issue of Time magazine, you automatically receive a copy. Java handles its
process the same way.

The difference in this analogy is the level of strictness with which Java adheres to this
relationship. The publisher of Time magazine will send the magazine to anyone who
pays. Java is not so liberal. Event sources can send Event objects only to listeners that have
been specifically designed to receive those Events. Therefore, when a listener object is
designed, it must be prepared to receive Event objects of a specific type.

262 Chapter 14—The Delegation Model

Preparing the listener to receive the event

The class designed to receive the Event object must adhere to a specific contract. The
contract is established by implementing the proper listener interface. Recall that an
interface is a contract between the interface, the class which implements that
interface, and the methods that the class must implement. An object can only accept
event objects of the type it listens for. The listener interfaces available to the programmer
in SDK 1.3 are:

� ActionListener

� ComponentListener

� FocusListener

� ListSelectionListener

� MouseListener

� MouseMotionListener

� WindowListener

Three basic steps are involved in the implementation. First, create an object which
implements one of the above event listeners:

public class Hello extends JApplet implements ActionListener {

Next, within that object, create a method named actionPerformed() that contains the
code that is to be executed whenever the listener hears something.

public void actionPerformed(ActionEvent e)

{

 Toolkit.getDefaultToolkit().beep();

}

SDK 1.3 Event Handling 263

Then create one or more source objects that broadcast events to specified listeners. Tell it
what the specified listeners are via the appropriate add...Listener() method. For example,
if you added a JButton (which broadcasts an Action event) within the Hello applet above
and to register Hello with the button as a listener, you would do the following:

JButton beepButton = new JButton(“Click Me”);

beepButton.addActionListener(this);

...

Here the this keyword was used since the button was within the same object as the
actionPerformed method. To add an ActionListener belonging to a separate object,
simply pass that object in the addActionListener’s parameter list.

You may register more than one actionListener with an event source. If you have an
object named beepCounter which also implemented the ActionListener interface, and
you want to add it to the beepButton’s list of registered listeners, you could use the
following code:

JButton beepButton = new JButton(“Click Me”);

beepButton.addActionListener(this);

beepButton.addActionListener(beepCounter);

Consider what you have learned for the next example.

Example: Creating a closeable JFrame

You may have noticed that when you create a JFrame, it does not close down the
application but rather the JFrame itself. You will now remedy this situation.

What is the source of the event?

If you are trying to close a JFrame that is a type of Window, then your source is a Window
object.

What type of event object is generated?

Consult Figure 14-2 at the end of this chapter or any good API. According to this
diagram, Window objects create events of type WindowEvent.

264 Chapter 14—The Delegation Model

What object types are capable of receiving WindowEvents?

According to Figure 14-2, objects that implement the WindowListener interface are able
to receive WindowEvent objects.

Now you have all the information needed to design the listener class.

import java.awt.*;

import java.awt.Window.*;

import java.awt.event.*;

import javax.swing.*;

public class MyWindowListener implements WindowListener

{

 public void windowOpened(WindowEvent e) {}

 public void windowClosing(WindowEvent e)

 {

 Window w = (Window)e.getSource();// Step 1

 w.setVisible(false);// Step 2

 w.dispose(); // Step 3

 System.exit(0);// Step 4

 }

 public void windowClosed(WindowEvent e) {}

 public void windowIconified(WindowEvent e) {}

 public void windowDeiconified(WindowEvent e) {}

 public void windowActivated(WindowEvent e) {}

 public void windowDeactivated(WindowEvent e) {}

}

SDK 1.3 Event Handling 265

Note the following items concerning the preceding code:

� The implementation of the interface forces you to implement all the methods of
that interface, even if they do nothing.

� The four steps listed above provide an accepted way to close your window and
application. We will examine each step.

Step 1 – Window w = (Window)e.getSource():
One piece of information contained in every Event object
is the source of the Event (the JFrame object reference
itself). Because a JFrame is a Window (by inheritance), you
must cast the variable w as such. The WindowEvent type
also contains a method called getWindow(), which returns
a variable of type Window (requiring no casting).

Step 2 – setVisible(false):
The current JFrame is visible. This step visually removes
the JFrame from the screen.

Step 3 – dispose():
Although the JFrame is no longer visually displayed, it is
still a reference within the JVM. This step removes the
reference from the JVM.

Step 4 – System.exit(0):
This step shuts down the JVM. Be sure this outcome is
the one you want.

Although you have created a listener that will properly respond to a WindowEvent, you
still need to register this class with the source.

Now create a simple JFrame called MyCloseableJFrame so you can close it with your
listener class. In the following code, notice the use of the public static void
main(String[] args) to instantiate itself. This technique is common.

import java.awt.*;

import java.awt.Window.*;

import java.awt.event.*;

import javax.swing.*;

266 Chapter 14—The Delegation Model

public class MyCloseableJFrame extends JFrame

{

 MyCloseableJFrame ()

 {

 setSize(200,200);

 show();

 }

 public static void main(String[] args)

 {

 MyCloseableJFrame myCF = new MyCloseableJFrame ();

 }

}

Now that you have a simple JFrame to display, you must register the event listener class to
the MyCloseableJFrame class (the source). Notice the method used to register the listener.
This convention is used each time you add a listener. If you were to register a listener class
that was designed to handle events of type ItemEvent, the class would have to implement
the ItemListener interface. The method to actually register the listener (in the source)
would be called addItemListener().

import java.awt.*;

import java.awt.Window.*;

import java.awt.event.*;

import javax.swing.*;

public class MyCloseableJFrame extends JFrame

{

 MyWindowListener myWindowListener;

 MyCloseableJFrame ()

 {

 setupGUI();

 }

SDK 1.3 Event Handling 267

 public static void main(String[] args)

 {

 MyCloseableJFrame myCF = new MyCloseableJFrame ();

 }

 private void setupGUI()

 {

 myWindowListener = new MyWindowListener();

 addWindowListener(myWindowListener);

 setSize(200,200);

 show();

 }

}

Summary of the event handling process

1. Determine the source of your Event. Is it a Window or a Button?

2. Determine the type of event the source Component will generate. If the source is a
Button, then an API will tell you that it generates an ActionEvent. Note the type
of listener the addSomeListener() requires. In the case of a Button, the API will
tell you that Button has a method called addActionListener(), which means that
it generates an ActionEvent.

3. Determine the type of listener class that must be created. Again, in the case of a
Button, it requires a listener of type ActionListener because it generates an
ActionEvent.

4. Create a listener class that implements the appropriate listener. Implement all
methods of the interface. Make the necessary method(s) truly functional.

5. Register an instance of the listener class from the source using the appropriate
addSomeListener() method.

268 Chapter 14—The Delegation Model

JFrame convenience methods for event handling

You might have noticed that the JFrames you created were able to close by default
(although not to the point of shutting down the JVM). This default feature of JFrames is
new to Swing.

To set default closing operations on a JFrame without implementing a listener class, use
the JFrame method of setDefaultCloseOperation(). The three modes are demonstrated
as follows:

class CloseJFrameStuff extends JFrame

{

 CloseJFrameStuff()

 {

 setupGUI();

 }

 private void setupGUI()

 {

 // You would not set all three modes

 // at the same time in your own code.

 // 1. Hide and remove the JFrame reference from memory.

 this.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

 // 2. Do not hide or close at all.

 this.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

 // 3. Simply hide the JFrame. This is the default mode.

 this.setDefaultCloseOperation(JFrame.HIDE_ON_CLOSE);

 setSize(200,200);

 show();

 }

}

SDK 1.3 Event Handling 269

Example: Event handling and callbacks

To further the development of the event model, consider another scenario. Suppose you
need to modify something in the source class (or interface) from the listener class. This
situation is common, and it relates directly to a concept discussed earlier regarding
callbacks. For the listener class to modify any of the Components from the source, the
listener class needs a reference to the Component.

In this example, you have two JButtons and a JTextArea. Ultimately, a message will pop
up in the JTextArea when a JButton is clicked. Start with the basic framework. The
interface is shown in Figure 14-1. When a user clicks a button, you want a message to be
displayed in the JTextArea. You must pass a reference for this JTextArea to the
EventListener class.

Figure 14-1: Interface with JButtons and JTextArea

270 Chapter 14—The Delegation Model

import java.awt.*;

import java.awt.Window.*;

import java.awt.event.*;

import javax.swing.*;

// This is the Frame with the JButton and JTextField.

// As shown here, it will only display a message

// to the command line when the JButton is clicked.

// You will put both classes on the same page.

public class MyCloseableJFrame extends JFrame

{

JButton top = new JButton("Say Hello");

JButton bottom = new JButton("Say Goodbye");

JTextArea textArea = new JTextArea(15,30);

MyJButtonListener myJButtonListener;

MyCloseableJFrame ()

{

setupGUI();

}

public static void main(String[] args)

{

MyCloseableJFrame myCJF = new MyCloseableJFrame
();

}

private void setupGUI()

{

SDK 1.3 Event Handling 271

Container c = getContentPane();

c.add(BorderLayout.NORTH, top);

add(BorderLayout.SOUTH, bottom);

add(BorderLayout.CENTER, textArea);

myJButtonListener = new MyJButtonListener();

 top.addActionListener(myJButtonListener);

 bottom.addActionListener(myJButtonListener);

setSize(300,300);

setVisible(true);

}

}

class MyJButtonListener implements ActionListener

{

public void actionPerformed(ActionEvent e)

{

// Notice how you can distinguish one button
from

// another by examining the JButton label.

if(e.getActionCommand().equals("Say Hello"))

{

System.out.println("Hello");

}

else

if(e.getActionCommand().equals("Say Goodbye"))

{

System.out.println("Goodbye");

}

}

}

Although this program responds to your JButtons, it does not yet meet your objective,
which is to display the messages back in the JTextArea. How can you obtain a reference
to the JTextArea from the listener object? The key is that you pass a reference to the
listener object via its constructor.

272 Chapter 14—The Delegation Model

In the original code, the ActionListener was added as follows:

myJButtonListener = new MyJButtonListener();

top.addActionListener(myJButtonListener);

bottom.addActionListener(myJButtonListener);

Now that you want to pass a reference to the MyJButtonListener, you can modify the
preceding code as follows:

myJButtonListener = new MyJButtonListener(textArea);

top.addActionListener(myJButtonListener);

bottom.addActionListener(myJButtonListener);

Of course, by passing a reference of type JTextArea to MyJButtonListener, you need an
appropriate constructor to receive textArea. The new and complete MyJButtonListener
is:

import java.awt.*;

import java.awt.Window.*;

import java.awt.event.*;

import javax.swing.*;

class MyJButtonListener implements ActionListener

{

JTextArea textArea;

MyJButtonListener(JTextArea tmpTextArea)

{

textArea = tmpTextArea;

}

public void actionPerformed(ActionEvent e)

{

// Notice how you can distinguish one button
from

// another by examining the JButton label.

if(e.getActionCommand().equals("Say Hello"))

{

SDK 1.3 Event Handling 273

textArea.append("Hello \n");

}

else

if(e.getActionCommand().equals("Say Goodbye"))

{

textArea.append("Goodbye \n");

}

}

}

Although this process seems to handle additional work, the code can grow in size and
become unmanageable when you need callbacks to several components in your GUI. In
this case, it may be better to simply pass a reference to the GUI itself (e.g., the
MyJCloseableFrame class) and access the various Components in that manner. For
example:

myJButtonListener = new MyJButtonListener(this);

Now the MyJButtonListener class has a reference to the entire MyCloseableJFrame class.

You will learn that the SDK 1.2 model is very flexible and offers multiple options for
handling each situation. In the next chapter, you will examine one of these options.

274 Chapter 14—The Delegation Model

S U N C E R T I F I C A T I O N

This chapter covered how to use the Java 1.1 event delegation model. You learned about
listeners and how to register them with the components that will generate the event. One
of the most difficult aspects of the Sun test is that the resources you normally rely on
while writing code, such as the Java 2 API documentation that comes with your
environment, are not available. Therefore, you should memorize the events that each
component might generate and the methods of each of the applicable listeners. This task
involves a great deal of work, but it is necessary to pass the exam.

As you used the various listener interfaces, you had to create many stubs. Often, there are
more stubs than coded methods for the interfaces. In the java.awt.event package, a
series of adapter classes is available. These adapters must be subclassed (they are a series of
empty methods), but if used, the stubs are not necessary. One drawback to using a
subclass of an adapter (or creating any listener method of your own) is that another class
must be sent over the Internet if you are using an applet. The design is up to the author,
but knowing how to use the adapter classes and listener interfaces are skills that will be
tested on the exam.

S U M M A R Y

This chapter covered events and Java's models for event handling. You studied the event
delegation model and through its processes. You also learned that if an event listener is
used by several different classes, then it should exist as a separate class. In the next
chapter, you will learn how to include the event listener directly into the class where it is
used, when it is used in only one class.

Post-Test Questions 275

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. Does a JMenuItem implement ItemListener?

...

...

2. What are four important things to consider when dealing with events?

...

...

276 Chapter 14—The Delegation Model

M A J O R T O P I C SM A J O R T O P I C S

15

Inner Classes

Objectives .. 278

Pre-Test Questions... 278

Introduction .. 279

What Is an Inner Class? ... 279

Inner Classes for Event Handling................................. 282

Graduating Task #4: Event-enabling the
Scribble Application... 286

Sun Certification ... 287

Summary ... 289

Post-Test Questions ... 290

278 Chapter 15—Inner Classes

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Define an inner class.

� Explain the advantages inner classes have over package-level classes in relation to
event handling.

� Design and implement inner classes for event handling.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is an Inner class?

...

...

Introduction 279

I N T R O D U C T I O N

Inner classes are primarily the result of blending the concepts of block structured
programming with those of classes. Inner classes facilitate an efficient way to organize
classes within classes and provide mechanisms to access classes as member variables. In
this section, we will delve into the specifics of inner classes, look at different flavors of
inner classes, and finally analyze a few examples.

W H A T I S A N I N N E R C L A S S ?

As their name suggests, inner classes are classes defined within other classes. This feature
was not available with the JDK 1.0; it was introduced with the SDK 1.2. Inner classes are
one of the more significant changes to the SDK model.

Inner classes offer some conceptual advantages over separate classes. For example, you
might be designing a Body class (such as a human body). A body contains organs such as
the heart and brain. Inner classes allow you to visualize this idea easily. For example:

class Body

{

 class Heart

 {

 // Code

 // Inner classes allow you to conceptualize your constructs

 class Brain // in meaningful (and highly encapsulated ways)

 {

 // Code

 }

}

280 Chapter 15—Inner Classes

There are four different types of inner classes:

� static inner classes

� member inner classes

� local inner classes

� anonymous inner classes

A static inner class has similar qualities to a static method. It has access to all static
methods and variables of the current class and that of the parent classes. Like most static
references, it does not require an instance of the enclosing class to exist for the static inner
class to be constructed. A member inner class is a generalization of a static inner class and
is similar to a member of a class. Like any other member, it has access to all methods and
variables inside of the class. Local inner classes are classes defined within a local code
block and are visible only within that block. Local inner classes only have access to their
own variables and parameters and any final variables of that method. Finally,
anonymous inner classes are those inner classes that are defined without any names.
Anonymous inner classes are usually created for small tasks such as event handlers.

Given below is a simple example of a local inner classes:

public class A

{

 int compute(final int x)

 {

 int y;

 class B

 {

 public int compute()

 {

 return x * 5;

 }

 }

 }

}

What Is an Inner Class? 281

The above example illustrates a class, B, that is a local inner class. Note that the variable x
is accessible to all methods in class B since it is declared final; although, variable y is not
accessible inside of class B, because it is not declared to be final. Also, class B and its own
members would not be directly accessible to other methods of class A.

The standard access protection mechanisms applicable to variables and methods, apply to
member inner classes, i.e., non-local inner classes can be defined public, private, or
protected just as member variables. Similarly, member inner classes can be defined as
final or abstract. Thus, any class that inherits from an inner class would need to be
further defined. We show an example later of how a class can extend an inner class.
However, a local inner class cannot be declared public, private, or protected as it is not
a member variable.

On a similar note, inner classes cannot declare static variables. This is because of the
conflicting ideologies of inner classes and the static keyword. Static variables and
methods are designed to be used by all instances of a particular class and always refers to a
top-level class and never an enclosed class.

Using inner classes has many advantages, including good organizational structure, easy
conceptual abstraction, and localization of relevant code. However, disadvantages to
inner classes also exist, such as the increased number of classes, the increased number of
interactions between classes, and the inability to use them outside the scope of their
enclosing class. Using inner classes correctly requires careful design, but when used
appropriately, they can prove very powerful.

282 Chapter 15—Inner Classes

I N N E R C L A S S E S F O R E V E N T H A N D L I N G

Event handling is an example of a process that can be streamlined by inner classes. Refer
back to your example where clicking a JButton caused a message to display back in the
JTextArea. To accomplish this, it was necessary to pass a reference to the JTextArea
through the constructor. However, this method of attack can make your code become
overly complicated as your needs grow. Inner classes can solve this problem.

Because inner classes can be defined within a normal class, they can have the same scope
as any other method or variable defined at that scope. Therefore, in the example where
your Button was sending a message to the JTextArea, if the MyJButtonListener class had
been defined at the member level, it would have automatically had a reference to the
JTextArea.

The modified code is as follows:

import java.awt.*;

import java.awt.event.*;

import java.awt.Window.*;

import javax.swing.*;

public class MyCloseableJFrame extends JFrame

{

 JButton top = new JButton("Say Hello");

 JButton bottom = new JButton("Say Goodbye");

 JTextArea textArea = new JTextArea(15,30);

 MyJButtonListener myJButtonListener;

 MyCloseableJFrame()

 {

 setupGUI();

 }

Inner Classes for Event Handling 283

 public static void main(String[] args)

 {

 MyCloseableJFrame myCF = new MyCloseableJFrame();

 }

 private void setupGUI()

 {

 Container c = getContentPane();

 c.add(BorderLayout.NORTH, top);

 c.add(BorderLayout.SOUTH, bottom);

 c.add(BorderLayout.CENTER, textArea);

 myJButtonListener = new MyJButtonListener();

 top.addActionListener(myJButtonListener);

 bottom.addActionListener(myJButtonListener);

 setSize(300,300);

 show();

 }

 // Inner class defined

 class MyJButtonListener implements ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 if(e.getActionCommand().equals("Say Hello"))

 {

 textArea.append("Hello \n");

 }

 else if(e.getActionCommand().equals("Say Goodbye"))

 {

 textArea.append("Goodbye \n");

 }

 }

 } // End inner class

} // End MyCloseableJFrame

284 Chapter 15—Inner Classes

It is important to note the immediate access that the inner class has to any of the instance
variables of the outer class (the MyCloseableJFrame class).

The preceding example demonstrated the use of a member level inner class. The use of
member level inner classes is very similar to the use of a seperate class. The difference
between the two are the means of referencing the inner class, and the scope of the inner
class. The following is an example of an anonymous inner class. This class is unusual in
two ways: first, it is defined entirely within the opening and closing parentheses of a
method and second, it has no name associated with it.

class AnonymousInnerClassStuff extends JFrame

{

 JButton btn = new JButton("A JButton");

 AnonymousInnerClassStuff()

 {

 setupGUI();

 }

 private void setupGUI()

 {

 btn.addActionListener(new ActionListener()

 {

 public void actionPerformed(ActionEvent e)

 {

 // Code to respond to JButton being clicked...

 }

 }); // End () and anonymous inner class.

 }

}

Anonymous inner classes provide an easy way for a programmer to implement small
classes without having to generate meaningless names, but their use can make code very
difficult to read. They should generally only be used in situations where the behavior of
the class is well-defined and the class is fairly small, no more than two or three methods.
Since they have no name, they may have no explicit constructor.

Inner Classes for Event Handling 285

How do inner classes represent themselves? This question may actually be answered in
two ways, how the class can be referenced in the code, and how the class appears on the
disk. Inside the code, an inner class may be referenced in a form similar to
OuterClass.InnerClass. Obviously, anonymous inner classes may not be referenced in this
fashion, since they have no name. The name of an inner class on the disk is similar. If you
were to find the compiled source for your MyCloseableJFrame.class, you would now
find another file named MyCloseableJFrame$MyButtonListener.class. This file is the
inner class.

A logical question that arises based on the above description is that: Can inner classed be
extended? Consider the following code fragment:

class A

{

 class B

 {

 int x;

 }

 B myB_1 = new B();

}

class C extends A.B

{

 C()

 {

 new test(). new A(). super()

 }

}

The preceding example shows how a member inner class, B, can be instantiated within
the class A. The code fragment also shows how another class, C, can extend the inner class,
B, and that class C requires an instance of its enclosing class and the class that it extends.
If class B were abstract, an object of class B could not be instantiated, but an object of class
C could be with the idea that class C would have further defined class B.

286 Chapter 15—Inner Classes

G R A D U A T I N G T A S K # 4 : E V E N T - E N A B L I N G T H E S C R I B B L E
A P P L I C A T I O N

In this task, you will event-enable the Scribble application to fully implement all its
features. Although, you have learned several forms of event handling, you might find that
using member inner classes is the best approach. Figure 15-1 shows the application and
the JPanels with which you will be working.

Figure 15-1: Scribble application

1. Event-enable the red, green, blue, and black JButtons so that when they are
clicked, the palette will change to the appropriate color.

2. Event-enable the three JScrollBars so that as they are dragged, a new Color object
is constantly generated. The palette should always reflect the color represented by
the state of the three JScrollBars.

This small JPanel is
your "palette." It
always displays the
current drawing color.

This large JPanel is
your "canvas," the
surface upon which
you will draw.

Sun Certification 287

3. Event-enable your mouse so that when you press and hold the button, you will
draw to the surface of the large JPanel (the canvas) in the current color of your
palette.

HINT: You must implement two interfaces to trap the "mouse-pressed" and "mouse-
dragged" events.

4. Event-enable the Erase JButton so that when it is clicked, the palette changes to
the current background color of the drawing canvas. You can use your mouse to
"erase" any previous drawings with this color.

5. (Optional) Modify Step 1 so that when the red, green, blue, or black JButton is
clicked, the JScrollBars automatically adjust to represent the proper RGB value.

S U N C E R T I F I C A T I O N

Expect to see inner classes on the Sun certification examination. Because you will often
create an inner class that is used only once, you need not assign it a name. This is referred
to as an anonymous inner class. This example was used earlier in this chapter to show an
inner class:

import java.awt.*;

import java.awt.event.*;

import java.awt.Window.*;

import javax.swing.*;

public class MyJFrame extends JFrame

{

JButton top = new JButton("Say Hello");

JButton bottom = new JButton("Say Goodbye");

JTextArea textArea = new JTextArea(15,30);

288 Chapter 15—Inner Classes

 // We will create an inner class of type ActionListener

 // and because we will only use it in this class, we will

 // make the class anonymous, even though

 // MyJButtonListener is an instance of the class.

ActionListener myJButtonListener = new
ActionListener()

{

 public void actionPerformed(ActionEvent e)

 {

 if(e.getActionCommand().equals("Say Hello"))

 {

 textArea.append("Hello \n");

 }

 else if(e.getActionCommand().equals("Say
Goodbye"))

 {

 textArea.append("Goodbye \n");

 }

 }

};

MyJFrame()

{

Container c = getContentPane();

c.setLayout(new BorderLayout());

c.add(BorderLayout.NORTH, top);

c.add(BorderLayout.SOUTH, bottom);

c.add(BorderLayout.CENTER, textArea);

setSize(300,300);

top.addActionListener(myJButtonListener);

bottom.addActionListener(myJButtonListener);

setVisible(true);

}

Summary 289

public static void main(String[] args)

{

MyJFrame myframe = new MyJFrame();

}

} // End MyJFrame

S U M M A R Y

An inner class is a class defined within another class. Inner classes can prove to be a very
convenient tool for organizing code. However, managing scope within inner classes can
be confusing. The following rules should aid in determining what is within scope of the
inner class and what access modifiers are permitted for the inner class.

� In a member level inner class, the class has access to all variables declared within
the enclosing class. The inner class may be declared public, protected, or private.

� In a local inner class the only variables within scope are the final variables of the
enclosing method. A local inner class may not be declared with an access modifier,
and can be treated as a private member of that local block.

Another confusing issue is the use of the static keyword with inner classes. The presence
or absence of the static keyword dictates whether a reference to the enclosing class is
necessary to access the inner class. In general you should remember:

� Local inner classes may not be declared static.

� An inner class that is declared static need not have a reference to its enclosing class.
Any non-static inner class must have a reference to its enclosing class, though this
reference may be an implicit this.new.

� A static inner class only has access to static members of the enclosing class.

290 Chapter 15—Inner Classes

Anonymous inner classes provide a handy way to implement trivial adapter classes and
other similar constructs. The following three points summarize the concept of the
anonymous inner class:

� An anonymous inner class is declared and instantiated at the same moment.

� An anonymous inner class is unnamed and therefore cannot have an explicit
constructor. Since it is no named, it may be referenced outside of the area in which
it is constructed.

� An anonymous inner class may extend another class or implement an innerface by
calling the superclass in its declaration.

With the previous points in mind, anonymous inner classes should begin to make sense.
They have a variety of potential uses, but in practice they are primarily used for simple
interfaces and should not be used when the class is long or complicated.

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What do you use inner classes for?

...

...

M A J O R T O P I C SM A J O R T O P I C S

16

Applets

Objectives .. 292

Pre-Test Questions... 292

Introduction .. 293

Applets and Web Browsers... 294

Converting an Application into an Applet 301

Converting an Applet into an Application 306

Sun Certification ... 308

Summary ... 309

Post-Test Questions ... 309

292 Chapter 16—Applets

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Compare and contrast applets and applications.

� Implement the life cycle of an applet through its inherited methods.

� Embed an applet into a HTML document.

� Pass parameters from a HTML document to its contained applet.

� Identify applet security restrictions.

� Convert an applet into an application.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is an Applet?

...

...

2. Can you convert an applet into an application?

...

...

Introduction 293

I N T R O D U C T I O N

At the beginning of this course, you learned that Java programmers write either
applications, servlets, or applets. Thus far, the focus has been on applications. However,
now that Components, Containers, and event handling have been covered, applets can
now be programmed. Programming applets poses only minor conceptual differences
from programming applications.

Examine the AWT class hierarchy shown in Figure 16-1. Observe that Applet is the
parent class for all applets and it extends Panel. The Applet class adds significant
functionality to the Panel class. The difference is that Applets are designed to run inside
an applet viewer, typically a Web browser.

Figure 16-1: Applet class hierarchy

Object

Component

Applet

Panel

Container

JApplet

294 Chapter 16—Applets

A P P L E T S A N D W E B B R O W S E R S

The relationship between applets and Web browsers is unique. Foreign code, the applet,
is trying to execute inside a browser that is executing on an operating system. This is a
three level system. The levels are complicated by the fact that the Java Virtual Machine,
the browser, and the operating system could all be distributed by different manufacturers.
For these reasons, strict rules are needed to ensure proper communication between the
levels.

� Rule No. 1: An applet’s init() method must be called before it will execute.

� Rule No. 2: An applets life cycle is controlled by the following methods:

public void init()

public void start()

public void stop()

public void destroy()

� Rule No. 3: Applets can receive information from HTML pages.

� Rule No. 4: The browser controls all security for the applet.

TECH TIP:
Consider compatibility when you use applets. Not all browsers support the
latest versions of Java. Sun JavaSoft offers a plug-in to make your Web browser
Java 2-compliant. Go to www.javasoft.com/products/plugin/ to download the
plug-in.

JApplets

JApplet is an extended class of java.applet.Applet. It adds support for interposing input
and painting behavior in front of the applet’s children. Additionally, it adds support for
special children that are managed by a LayeredPane and for the Swing MenuBars. JApplet
implements the Accessibile and RootPaneContainer interfaces. JApplet usage is similar to
that of Applet, but there are some key differences.

� Components do not go directly in the frame. Instead they go in the content pane.

� The default layout manager is not FlowLayout as it is in Applet; it is BorderLayout
like Frame and JFrame.

Applets and Web Browsers 295

� Instead of getting the native look it defaults to the Java Metal look.

� Drawing is done in paintComponent() instead of paint().

� Double buffering is used by default.

Applet life cycle

The init() method is the first method executed in an Applet. Both the main() and init()
methods are responsible for initialization of their code. The init() method is called only
once.

The start() method is the second method called in an applet. The start() method might be
called repeatedly throughout the life of the applet. It is called whenever the applet gains
focus. This commonly occurs when the browser is minimized and then restored or when
the user moves to another Web page and then comes back. This functionality is required
when processes are running in the applet that consume many resources. These resources
need to be released so that other programs can execute.

The stop() method works in conjunction with the start() method. The stop() method is
responsible for releasing resources consumed by the applet. A good example is an applet
that is running animation. Animation consumes large amounts of memory and processor
cycles. If the user navigates to another Web page, the applet should be respectful of the
user's resources and stop() the animation. These resources will be regained and the
animation will resume when the applet regains focus, the browser will call start().

TECH TIP:
Not every applet will need the start() and stop() methods to be declared. The
methods are inherited from Applet and are called automatically by the browser.
It is not recommended that the methods be overridden except in process-
intensive applets.

The destroy() method is called when the applet is removed from memory. Since this is a
process of Garbage Collection, there is no way of knowing exactly when the method will
be called. However, it should be used to release any system resources that may not have
been returned to the system by stop(). Such resources include database connections,
threads, and open streams.

296 Chapter 16—Applets

The paint() method should be considered one of the five essential methods of applets.
The paint() method is inherited from Container. Typically, any Graphics drawn to the
applet's graphics context will be performed by overriding the paint() method.

The paint() method is the only method involved with the life of the applet that the
programmer has control over. Various actions that occur behind the scenes, under the
control of the browser and the AWT, actually control the applet.

The <APPLET></APPLET> tags

Often applets are started from within a HTML page. The <APPLET> tag is used to
inform a browser that an applet is embedded. The <APPLET> tag has three required
parameters: CODE, WIDTH, and HEIGHT. A Web page example follows:

<HTML>

<BODY>

 <APPLET

 CODE="MyJApplet.class"

 WIDTH=300 HEIGHT=200>

 </APPLET>

</BODY>

</HTML>

This HTML code will execute an applet code named MyJApplet.class. The browser will
assume that this code resides in the current working directory. The size of the applet is
300 x 200 pixels.

TECH NOTE:
HTML 4.0 favors the use the <OBJECT> tags instead of <APPLET>. Keep
in mind, however, that the Appletviewer utility included with the Java 2 SDK
does not support the <OBJECT> tag.

Along with the required parameters, several optional attributes can be used within the
<APPLET> tags, including CODEBASE, ALIGN, and ALT.

CODEBASE specifies a relative directory path to locate the executable code. This is often
used when images and class files are located in different directories.

Applets and Web Browsers 297

ALIGN allows the applet to be positioned inside the browser window. The values that can
be assigned to ALIGN are LEFT, RIGHT, BOTTOM, TOP, TEXTTOP, MIDDLE,
ABSMIDDLE, BASELINE, ABSBOTTOM, VSPACE, and HSPACE. Refer to a HTML
manual for the specifics of each value.

ALT allows a message to be displayed to a user who has disabled Java in his or her
browser.

The following code illustrates all of these attributes.

<HTML>

<BODY>

<APPLET

 CODEBASE = "Applet/Classes"

 CODE ="MyApplet.class"

 WIDTH="300"

 HEIGHT="200"

 ALIGN="LEFT"

 ALT="Your Java feature has been disabled">

</APPLET>

</BODY>

</HTML>

298 Chapter 16—Applets

Passing parameters to applets

HTML pages can send information to an embedded applet by using parameter tags.
Examine the following example:

<HTML>

<BODY>

<APPLET

CODE="MyJApplet.class"

WIDTH=300 HEIGHT=200>

<param name = "fontSize" value = "20">

<param name = "fontColor" value = "red">

</APPLET>

</BODY>

</HTML>

Although the nature of the information being passed can be anything, the Applet method
used to retrieve the value, getParameter(), only returns a String. Therefore, the parameter
value may have to be converted into the needed data type. The following applet will
receive the parameters listed in the HTML from above. Notice the conversion from
Strings to other data types.

public class MyJApplet extends JApplet

{

 int fontSize;

 Color fontColor;

 String tmpFontColor;

Applets and Web Browsers 299

 public void init()

 {

 fontSize = new Integer(getParameter("fontSize")).intValue();

 tmpFontColor = getParameter("fontColor");

 if(tmpFontColor.equals("red"))

 fontColor = Color.red;

 else if(tmpFontColor.equals("green"))

 fontColor = Color.green;

 else

 fontColor = Color.blue;

 repaint();

 }

 public void paint(Graphics g)

 {

 g.setColor(fontColor);

 g.setFont(new Font("Courier",Font.BOLD, fontSize));

 g.drawString("Java does it better!", 25,100);

 }

}

The output should resemble Figure 16-2.

Figure 16-2: Output of MyApplet

TECH TIP:
HTML is not case sensitive. Java is case sensitive. The value of a parameter
will be accepted exactly as it is typed in the HTML page.

300 Chapter 16—Applets

Applets should not be trusted

Applets have strict security limitations placed on them; these limitations present
advantages and drawbacks.

Applet security is an advantage because an untrusted piece of code can be prevented from
running on a computer where it does not have security permissions. The freedom to
perform malicious acts such as deleting, copying, or corrupting data can be denied. The
security permissions for applets are set in the browser of the users computer. On the other
hand, applet security is a drawback because many common tasks cannot be performed by
an applet.

Applets are said to live in a sandbox, that imposes the following security restrictions:

1. Applets cannot run any executable code on the local machine.

2. Applets can neither read nor write disk information from the local machine.

3. Applets can establish a network connection only with the host from which they
were downloaded.

4. All windows that pop up from an applet have a warning message that alerts users
not to enter sensitive information.

It is important to realize that these security restrictions are not part of the Java language,
but are imposed on the applet via browser's SecurityManager. Each browser has a unique
manner for setting security levels.

The Appletviewer supplied by the Sun SDK offers the same level of access for an applet as
for an application. The Sun HotJava browser is also somewhat liberal, when compared to
a Netscape or Microsoft browser.

Since the introduction of the JDK 1.1, applets can be signed. A signed applet contains a
piece of data similar to a digital signature. Theoretically, if a signed applet is downloaded
from a trusted source, the user can give it more access rights than an unsigned applet.
This allows an applet to perform many tasks that were previously forbidden.

Converting an Application into an Applet 301

Table 16-1 describes many of the methods of a JApplet.

C O N V E R T I N G A N A P P L I C A T I O N I N T O A N A P P L E T

An application can be converted into an applet and an applet into an application. The
following rules describe the process of converting an application.

1. The init() method of an applet is similar to the main() method in an application.
Use it to perform any form of initialization or instantiation.

2. The Web browser will instantiate the applet.

3. Applications are derived from Containers, applets must be derived from Applet or
JApplet.

Table 16-1: Methods of the Applet class

Method Description
AppletContext getAppletContext() Returns an Applet Context. This object provides several methods

useful for interacting with the browser.

String getAppletInfo() Some applets override this method to display useful information to
the user of the applet.

AudioClip getAudioClip() Returns an AudioClip object at a specified URL.

URL getCodeBase() Returns the URL that launched the applet.

URL getDocumentBase() Returns the URL of the HTML page that launched the applet.

Image getImage() Returns an Image at a specified URL.

String[] getParameterInfo() Some applets display their parameter information as stored in an
array.

Boolean isActive() Returns true or false depending on whether the applet is started or
stopped.

Void play() Plays the AudioClip returned by getAudioClip().

Void resize() Resizes the applet.

Void showStatus() Displays a message in the status window of a browser (browser
permitting).

302 Chapter 16—Applets

4. The size and visibility of the JFrame in an application is set within the application
via setSize() and setVisible() methods. The size of an applet should be set within the
HTML document, while the Web browser makes it visible.

5. Applets must be declared public.

The following code is a simple GUI application, that will be turned into an applet.

import java.awt.*;

import java.awt.Window.*;

import java.awt.event.*;

import javax.swing.*;

class MyApplication extends JFrame

{

 JButton north = new JButton("North");

 JButton south = new JButton("South");

 JButton east = new JButton("East");

 JButton west = new JButton("West");

 JTextArea textArea = new JTextArea();

 MyApplication()

 {

 setUpGUI();

 }

 public static void main(String[] args)

 {

 MyApplication m = new MyApplication();

 }

 void setUpGUI()

 {

Converting an Application into an Applet 303

 Container c = getContentPane();

 c.setLayout(new BorderLayout());

 c.add(BorderLayout.NORTH, north);

 c.add(BorderLayout.SOUTH, south);

 c.add(BorderLayout.EAST, east);

 c.add(BorderLayout.WEST, west);

 c.add(BorderLayout.CENTER"Center", new JScrollPane(textArea));

 setSize(200,200);

 setVisible(true);

 }

}

The output should resemble Figure 16-3.

Figure 16-3: Output of MyApplication

304 Chapter 16—Applets

The following code is the same program written in Applet form:

/* HTML code necessary to start the applet

<HTML>

<BODY>

<APPLET

 CODE ="MyApplet.class"

 WIDTH="200" HEIGHT="200">

</APPLET>

</BODY>

</HTML>

*/

public class MyApplet extends JApplet

{

 JButton north = new JButton("North");

 JButton south = new JButton("South");

 JButton east = new JButton("East");

 JButton west = new JButton("West");

 JTextArea textArea = new JTextArea();

 public void init()

 {

 setUpGUI();

 }

 void setUpGUI()

 {

Converting an Application into an Applet 305

 Container c = getContentPane();

 c.setLayout(new BorderLayout());

 c.add(BorderLayout.NORTH, north);

 c.add(BorderLayout.SOUTH, south);

 c.add(BorderLayout.EAST, east);

 c.add(BorderLayout.WEST, west);

 c.add(BorderLayout.CENTER"Center", new JScrollPane(textArea));

 }

}

The output should resemble Figure 16-4.

Figure 16-4: Output of MyApplet

306 Chapter 16—Applets

C O N V E R T I N G A N A P P L E T I N T O A N A P P L I C A T I O N

Applet extends Panel, therefore an applet can be added to a JFame. This is accomplished
by adding a main() method and a JFrame to the MyApplet class. Inside the main()
method, create an instance of the MyApplet and add it to the JFrame. Then, call the
init() method on the applet. Because the applet is no longer receiving parameters from an
HTML page, the applet’s variables must be set in another manner.

public class MyApplet extends JApplet

{

 int fontSize = 20;

 String tmpFontColor = "red";

 Color fontColor;

 public static void main(String args[])

 {

 JFrame f = new JFrame();

 MyApplet myApplet = new MyApplet();

 f.getContentPane().add(myApplet);

 myApplet.init();

 myApplet.start();

 f.setSize(300,125);

 f.setVisible(true);

 }

 public void init()

 {

 if(tmpFontColor.equals("red"))

 fontColor = Color.red;

 else if(tmpFontColor.equals("green"))

 fontColor = Color.green;

 else

 fontColor = Color.blue;

 repaint();

 }

Converting an Applet into an Application 307

 public void paint(Graphics g)

 {

 g.setColor(fontColor);

 g.setFont(new Font("Courier",Font.BOLD,

 fontSize));

 g.drawString("Java does it better!", 25,50);

 g.drawString("(now an application)",25,75);

 }

}

The output should resemble Figure 16-5.

Figure 16-5: Output of MyApplet after conversion

308 Chapter 16—Applets

Exercise 16-1: Converting the Scribble application into an applet

The differences between applets and applications are subtle. Other than the security
restrictions placed on an applet by its environment, application and applet development
are virtually identical. In this exercise, you will convert your Scribble application into an
applet. If you do not have a browser that supports the Swing components, you can either
download the plug-in from Sun JavaSoft at http://www.javasoft.com/products/plugin/ or
use the Appletviewer that is included with the SDK 1.2.

1. Convert your Scribble application into an applet. Keep the following points in
mind:

� You must extend JApplet instead of JFrame.

� Although applets support a default constructor, you will probably want to
substitute the role of the main() method in your application with the init()
method of your applet.

� Applets should not be able to close the browser in which they are contained.

2. (Optional) Instead of having your Scribble applet exist within the browser, retain it
as an application. Launch it from another applet in the browser as a JFrame. It is
possible to have free-floating windows from within a browser.

S U N C E R T I F I C A T I O N

Java 1.1 added the ability to use JAR files with applets. By doing this, an applet gained
the ability to load all of its associated files at one time. Sun’s exam will possibly ask
quesitons concerning the use of JAR files with applets.

Applet is a subclass of Panel which is a subclass of Container which is a subclass of
Component which is a subclass of Object. Applet inherits every method of all of these
super classes. Sun tests on these methods and their proper use. Applets and applications
can be converted. Questions will be asked about the conversion process and what
methods are allowed.

Summary 309

S U M M A R Y

This chapter discussed the differences between Java applets and applications. You learned
about the applet life cycle and some of its inherited methods. You also considered the
security restrictions placed on applets, as well as some alternatives to those limitations.
Finally, you converted an application into an applet and an applet into an application.
Although the development of applets is an important part of the Java language, this
course focuses on applications. In following chapters, the focus will be on more advanced
topics, such as exceptions, threads, streams, and networking.

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. How do you pass an integer named number with a value of 4 to an applet?

...

...

2. What are the applet security restrictions?

...

...

310 Chapter 16—Applets

M A J O R T O P I C SM A J O R T O P I C S

17

Exceptions

Objectives .. 312

Pre-Test Questions... 312

Introduction .. 313

What Is an Exception? ... 313

When Bad Things Happen to Good Programs 316

Creating and Throwing Your Own Exceptions 321

Exception Handling Tips ... 324

Sun Certification ... 325

Summary ... 326

Post-Test Questions ... 326

312 Chapter 17—Exceptions

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Differentiate between Errors and Exceptions.

� Differentiate between RuntimeExceptions and explicit Exceptions.

� Handle an Exception using the try/catch statement.

� Propagate an Exception using the throws statement.

� Create and use a user-defined Exception.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is an Exception?

...

...

2. What is an Error? What is the difference between an Error and an Exception?

...

...

Introduction 313

I N T R O D U C T I O N

Abnormal conditions may occur inside of code for a number of reasons, ranging from
unexpected input, to undefined program behavior. The ability to handle and recover
from these situations is called exception handling. Proper use of exception handling
increases program robustness and can insure program correctness. Java has a cleanly
designed exception handling mechanism built natively into the language. The use of
these exception handling features is required in order for many methods to execute.

W H A T I S A N E X C E P T I O N ?

An abnormal condition in the program execution may cause unexpected behavior. In
Java, in many cases it is possible to detect and recover from this condition. In most cases
where this occurs the program has thrown an exception. An Exception is an abnormal
condition that has arisen. The Java design states that an Exception is a subclass of the
Throwable class.

Java defines a number of exceptions that may arise from various common causes. These
exceptions may range from examples such as a user having entered incorrect input, to the
program attempting to access an invalid area of memory, to a program attempting to
access a file which does not exist on disk.

A programmer may designate certain areas of the code as being subject to an exception
being thrown, and guard against abnormal behavior by catching this exception. When an
exception is thrown in this manner, it maintains some information on what type of
situation it resulted from, and what type of exception it is. The programmer may use this
information inside of a try/catch/finally clause in order to deal with the exception, or
he may choose to ignore the exception by not dealing with it and continue program
execution.

Multiple different types of exceptions may also be dealt with in separate ways, or the
programmer may attempt to deal with all Exception, by catching all exceptions which fall
underneath the super class Exception, which is all of them.

314 Chapter 17—Exceptions

In this way, a programmer may protect against all but the most serious types of program
failure. For these types of failures, it is normally impossible for a program to recover and
generally, there should be no reason for a program to deal with a serious failure of this
type, known as an Error.

Errors

Error is the second subclass of Throwable. Errors can occur at runtime and usually are of
a serious enough nature that they should not be handled by the Exception handling
mechanism. Errors will terminate a program and are generally functions over which the
programmer has little control, such as OutOfMemoryError or StackOverflowError or the
dreaded UnknownError.

Exceptions

The superclass of all exceptions is Exception. A number of subclasses of Exception exist,
but they can be effectively divided into two types, all exceptions which are subclasses of
RuntimeException and all other exceptions which are not subclasses of
RuntimeException.

RuntimeExceptions (unchecked)

RuntimeException is an abstract class defining a set of possible conditions that might
occur anywhere in a program. Some examples of RuntimeExceptions are:

� ArithmeticException (often the result of dividing by 0)

� ClassCastException (trying to perform an illegal cast operation)

� IndexArrayOutOfBoundsException (e.g., accessing element 15 of a 10-element
array)

� NullPointerException (trying to access an object when the variable contains null)

What Is an Exception? 315

The Java compiler does not enforce programmatic handling of RunTimeExceptions (you
can ignore them), which is why they are referred to as unchecked exceptions. This
relaxation of the common exception handling rule is because a runtime exception can
feasibly occur at any point in the code, but the occurrence can normally be avoided
through proper and careful programming. Although, they may be easily avoided most of
the time, runtime exceptions may still be treated as normal exception

Other exceptions (checked)

The remaining exceptions can be found in multiple Java packages. Some of them are
defined in java.lang (such as an InterruptedException for a sleeping Thread). Others
are defined in java.net or java.io (such as a network connection not found or a file not
available). You can even create your own exceptions, then use the same handling
mechanisms discussed in this chapter with your custom exceptions. You can accomplish
this by creating a class that is derived from Exception and using a default constructor.
Another term for these exceptions is checked Exceptions. This is where you must state
that they might occur and you must make provisions for them via a try/catch/finally
block(you cannot ignore them).

Figure 17-1 illustrates how the various exceptions are related to one another.

Figure 17-1: Exception class hierarchy

O b jec t

T hro wa ble

E xce ptio n

R untim eE x cep tio n O th er E xce ption s

E rror

•
•
•

•
•
•

•
•
•

316 Chapter 17—Exceptions

W H E N B A D T H I N G S H A P P E N T O G O O D P R O G R A M S

Exceptions will occur in your programming. Better programming practices can help you
avoid runtime exceptions, and you cannot do much to prevent errors. Therefore, we
will focus on explicit Exceptions (referred to as Other Exceptions in Figure 17-1).

There are four possible actions you can take if an Exception occurs:

1. Ignore the Exception.

2. Handle the Exception with a try/catch statement.

3. Throw the Exception to the calling method.

4. Handle the Exception and rethrow it to the calling method.

Ignoring the Exception

In the case of a RuntimeException, you can simply ignore the occurrence. If no action is
taken when an Exception occurs, the method in which it occurs immediately stops. It
then reports back to the method that called it, stating that an Exception occurred. If this
method ignores the reporting method, the reporting method continues to propagate up
the calling methods until the program finally terminates. This propagation should be
avoided by careful programming.

For explicit Exceptions, this scenario cannot occur. If a method might generate an
Exception, it is explicitly stated by a throws declaration. For example, the method
specification for clone() in the Object class is as follows:

protected native Object clone() throws CloneNotSupportedException;

Once this declaration exists, you cannot ignore it, so you must take other action.

When Bad Things Happen to Good Programs 317

Handling the Exception

This action is most often taken with exceptions. The code that might generate an
exception (usually a call to a method with a throws statement) is written into a
try/catch statement as follows:

try

{

 myObject.clone();

}

catch (CloneNotSupportedException e)

{

 // action to take if the Exception occurs

 System.err.println("This clone wasn't supported!");

}

The try block implies that the program is going to attempt to execute the code contained
within the block, but recognizes that an exception may be thrown from a method inside
of that block. The catch block is required and will handle any exception of the type
declared in the catch clause. In this case, it is a CloneNotSupportedException. A finally
clause may also exist.

The goal is to catch an Exception and correct it so it does not interfere with the smooth
flow of your program. A potential Exception might occur in the try statement. If an
Exception is thrown, control is immediately transferred to the catch statement to handle
the Exception in an appropriate manner.

318 Chapter 17—Exceptions

An extension to the try/catch block is the finally clause. The finally clause is
guaranteed to always be executed after the try and associated catch blocks are finished
executing. Following is an example of the use of a finally clause.

try

{

 //some code that may throw an exception

}

catch(Exception e)

{

 // "fix" any problems

}

finally

{

 // clean up – for example, close any IO streams.

}

It is possible to catch different types of Exceptions. For example:

try

{

 //some stuff that throws an Exception

}

catch(IOException e1)

{

 //fix problems

}

catch(InterruptedException e2)

{

 // fix problems

}

catch(Exception e3)

{

 // fix problems

}

When Bad Things Happen to Good Programs 319

In the previous code, you tested first for IOException. If that was not the exception which
occurred, then an InterruptedException is tested for. If that is not the correct type of the
exception, then the Exception clause will catch it because all exceptions ultimately
inherit from Exception. Notice the order of the catch statements. Note that if an
IOException were caught by this example, the first catch block would handle the
exception and execution would resume after the last catch block. In this example, if there
is no Exception, the return statement will return control to the calling method.
However, the finally clause is always invoked, even if no exception was raised.

Throwing the Exception to the calling method

Sometimes, you want to defer the handling of an exception. For example, create a
program that handles all exceptions in methodA(), and notifies the programmer that
they occurred.

void methodA()

{

 try

 {

 methodB();

 }

 catch (Exception e)

 {

 System.out.println("something went wrong");

 }

}

void methodB() throws Exception

{

 methodC();

}

320 Chapter 17—Exceptions

void methodC() throws Exception

{

 throw new Exception()

}

In this program, methodA() calls methodB(), which calls methodC(). Then methodC()
declares that it throws an Exception, so the Exception is passed up to methodB(). Now
methodB() appears to have thrown the Exception, and passes it up to methodA(). The
methodA() contains the Exception handling code (try/catch), so the processing occurs
here. This process shows how explicit Exceptions can be passed up the calling stack.

Handling and rethrowing the Exception

It is possible to try/catch an Exception and then rethrow it. The syntax is as follows:

public someMethod() throws SomeException

{

 try

 {

 // code that may throw SomeException

 }

 catch(SomeException e)

 {

 // some Exception handling code

 throw e;

 }

}

This way, some level of exception handling may take place, and then the exception
passed back up the calling stack for other methods to perform further exception
handling.

Creating and Throwing Your Own Exceptions 321

C R E A T I N G A N D T H R O W I N G Y O U R O W N E X C E P T I O N S

Creating the Exception

Creating exceptions in Java is straightforward. Typically, you will want to create a checked
exception. You can create a checked exception by subclassing the Exception class.

public class MyException extends Exception

{

 // You now have your own exception.

 // There is a little more to do still...

}

Each Exception generates a unique message when it is thrown. The Exception you build
should generate a message in case it is not caught. The constructors defined in the
Exception class are designed to make a message available when the Exception occurs.
However, constructors are not inherited, so you must use an explicit call to super()
constructor from within MyException to access this feature.

public class MyException extends Exception

{

 public MyException(String message)

 {

 // Let the Exception class do all the work.

 super(message); // a call to super must be the first thing
 // in a constructor

 }

 public MyException()

 {

 // It is possible to set a default message.

 super("A MyException was thrown.");

 }

}

322 Chapter 17—Exceptions

Throwing the Exception

Throwing an Exception in Java is straightforward. It also provides much insight into how
certain methods used in this course were defined. For example, you have used the
Thread.sleep() method several times, yet we have never explained why it is necessary to
place this method in a try/catch block. The following code, which throws a
MyException, would be nearly identical to the Thread.sleep() method, which throws an
InterruptedException.

public class ThrowMyException

{

 // In this method, if help is set to true (and it

 // is), a MyException is thrown.

 // Notice that the method itself is designed to throw

 // the MyException with the "throws" keyword.

 public void throwMyExceptionMethod() throws MyException

 {

 boolean help = true;

 if(help)

 {

 // If the conditions are right, throw an instance

 // of the MyException class.

 throw new MyException("Help! Help!");

 }

 }

}

Creating and Throwing Your Own Exceptions 323

Now, the system is set. The MyException class is well-defined, and the code within the
method that throws the MyException is also well-defined. Now, test the system:

public class TestMyException

{

 public static void main(String[] args)

 {

 ThrowMyException throwME = new ThrowMyException();

 // It is a checked exception, so the method must be

 // placed inside of a try/catch (for example).

 try

 {

 throwME.throwMyExceptionMethod();

 {

 catch(MyException e)

 {

 System.out.println(e);

 }

 }

 }

 }

}

Upon running TestMyException, you will see the following on your command line:

test2.MyException: Help! Help!

324 Chapter 17—Exceptions

E X C E P T I O N H A N D L I N G T I P S

1. When deciding on whether a method should throw an exception, you should
consider whether this exception must be handled by the external method. If all
appropriate actions could be taken from within the internal method, the one
which you intend to throw the exception, then it is best to handle exception there.

2. While it is often easier to declare a catch clause to catch all exceptions of type
Exception, it is better practice to declare each individual type of exception that the
try block may throw. This practice allows for easier code maintenance and
modification.

3. Remember that after all methods inside of a catch block have been executed, flow
of control will return to the finally block if it exists, or to the end of the
try/catch statements if finally does not exist.

4. Subclasses of RuntimeException need not be caught, but they can be caught if the
programmer desired. Thus an attempt may be made to check an
ArrayOutOFBoundsException or a NullPointerException.

5. Remember that all code that appears in a try block after a method that may
generate an exception cannot be guaranteed to execute.

Sun Certification 325

S U N C E R T I F I C A T I O N

On the Sun certification exam, exceptions are divided into checked and unchecked
Exceptions. Unchecked Exceptions are the same as RuntimeExceptions, which were
discussed in this chapter. Unchecked Exceptions (like Errors) do not have to be thrown
or caught. Checked Exceptions can either be included in a try/catch block or declared
to be thrown by the method.

It is interesting to see which exceptions can be thrown when a method is overridden in a
subclass. An overridden method cannot throw any checked Exceptions that are not
thrown by the method overridden. Figure 17-2 demonstrates this.

Figure 17-2: Overridden method

class A
{
public void test() throws

MyException;

class B extends A
{
public void test();

}

class C extends B
{
public void test();
// cannot throw MyException

}

326 Chapter 17—Exceptions

S U M M A R Y

This chapter defined Exceptions and Errors, and discussed how to deal with Java's
exception handling capabilities. You will learn more about Exceptions in the upcoming
chapters. Thread methods, IO methods, and networking methods are all prone to
Exceptions being generated, so they must often use the try/catch or exception
propagating mechanisms discussed in this chapter.

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What will be printed in the code below?

double d = 5.0;

try{ System.out.print(d/0); }

catch(ArithmeticException ae){System.out.println(“ERROR”); }

finally{ System.out.println(“ TEST”);

...

...

2. What does the throw(JRE)s(JRE) keyword do?

...

...

3. What are the four things you can do with an Exception?

...

...

M A J O R T O P I C SM A J O R T O P I C S

18

Creating Threads and Thread Methods

Objectives .. 328

Pre-Test Questions... 328

Introduction .. 329

What Are Threads? .. 329

How Operating Systems Handle Multitasking............. 330

Types of Threads in Java .. 330

Creating Threads ... 332

Graduating Task #5: Creating a threaded
digital clock ... 346

Sun Certification ... 347

Summary ... 347

Post-Test Questions ... 348

328 Chapter 18—Creating Threads and Thread Methods

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Define threads.

� Create and instantiate threads using two different techniques.

� Control single-thread flow using many thread methods.

� Define the four thread states and their relationships to thread methods.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is a thread, and what is the significance of proper thread use?

...

...

2. In Java, what are the two possible ways one would go about creating a new thread
of execution?

...

...

3. What are the conditions that might prevent a thread from running?

...

...

4. What is the significance of the of the synchronized keyword?

...

...

Introduction 329

I N T R O D U C T I O N

Thus far, all of your programs have been written to executed sequentially: all of the
statements execute one after the other, in a specified order. Multi-processing and
parallelism allow multiple actions to be executed simultaneously, either physically
simultaneous on multiple CPUs, or logically simultaneously on a single CPU. This
chapter explores the Java support for simultaneous processing using threads

W H A T A R E T H R E A D S ?

Before defining a thread, there must first be a distinction made among the terms
multitasking, multiprocessing, and multithreading.

Multitasking is a general term referring to the ability to perform more than one function
simultaneously.

Multiprocessing is the ability to run more than process at the same time. If you are
running a word-processing program and a graphics editor and also listening to your
favorite CD on your computer, you are running three processes at once. Most modern
operating systems are efficient at multiprocessing.

Multithreading is the ability to excite more than one action within the same process.
Suppose that you are running a Web browser (a process), and you are using it to send an
e-mail, download an audio file, and upload a text file to an FTP server. You are running
three threads within one process. The primary difference between multiprocessing and
multithreading is that each process maintains a separate data set, whereas multiple
threads can work on the same data set.

As a result of the integral multithreading support designed into the language, Java
applications and applets are implicitly multi-threaded. The Object class contains
methods wait() and notify() which are used in thread control. Multithreading is
normally more efficient than non-threaded programs or multiprocessing. Multithreading
may prevent parts of a process from waiting while a slower part executes. It is also less
taxing for an operating system to maintain multiple threads than to maintain multiple
processes. This enables programmers to write very efficient Java code.

330 Chapter 18—Creating Threads and Thread Methods

H O W O P E R A T I N G S Y S T E M S H A N D L E M U L T I T A S K I N G

One of the difficulties faced by Java language designers was the various approaches used
by different operating systems to address multi-tasking. Fundamentally, multitasking
involves two techniques: pre-emptive multitasking and cooperative multitasking.

Pre-emptive multitasking allows the operating system to interrupt the execution of one
process or thread, and transfer control to another process or thread. Each process notifies
the OS of its priority. The OS uses this information to continuously provide each active
process with its slice, or allotment, of CPU time. In such a system, the tasks need not
cooperate with each other because a task can receive CPU time based on its priority.
Thirty-two bit Microsoft Windows operating systems use pre-emptive multitasking.

Cooperative multitasking requires that a task willingly surrender control in order for task
can gain CPU time. The problem becomes apparent: What if a task is unwilling to
relinquish control? The possibility for dominating the CPU is great.

Java uses pre-emptive multitasking. Although Java may be running on a system that uses
cooperative multitasking, this discrepancy does not pose a problem as long as you design
your threads to behave in a considerate manner. The JVM handles the thread scheduling
inside of the Java process.

T Y P E S O F T H R E A D S I N J A V A

Java uses two types of threads: daemon threads and user threads. Most daemon threads
are created by the JVM, while most user threads are created by the programmer.
However, user threads may be set as daemon threads.

The difference between the two threads is based on the services they perform. Daemon
threads are usually designed to run in the background for the purpose of servicing user
threads. The garbage collector thread is a good example of a daemon thread. It works in
the background performing its garbage collection service for other threads. When all
other user threads have finished, the garbage collector thread no longer exists.

Types of Threads in Java 331

The programmer will rarely work directly with daemon threads. The JVM provides other
servicing threads in addition to the garbage collector. There is a daemon thread for
processing mouse events, and for maintaining your graphics context. If you need some
type of scheduling service running in the background, you could create a daemon thread
for this purpose. Daemon threads expire when the last user thread expires. At that point,
the program will terminate.

Programmers create and utilize user threads more frequently than daemon threads. You
have worked with one particular user thread since your first Java program: the main
thread.

The main thread is a user thread made available by the JVM. This thread is launched in
the public static void main(String[] args) method. From this main thread, you will
launch all other threads. See Figure 18-1.

Figure 18-1: The main thread

main thread

user thread user thread

user thread user thread

332 Chapter 18—Creating Threads and Thread Methods

C R E A T I N G T H R E A D S

In Java, a thread may be created using two techniques. You may either subclass the Thread
class, or create a class which implements the Runnable interface. Both techniques are used
extensively in Java, and each has advantages and disadvantages. The next section will
examine these techniques in detail and discuss their strengths and weaknesses.

Subclassing the Thread class

Java has a class called Thread. By extending the Thread class, you inherit all the
functionality of this class.

class MyThread extends Thread

{

}

This code is a valid Thread that does nothing. You can remedy this by adding a method
named run().

The JVM expects to find all code intended for execution as part of a Thread in the run()
method. By consulting the Runnable interface the JVM knows that the run() method is
available.

The Thread class implements the Runnable interface. The only method defined in this
interface is run(). When you extend Thread, you also inherit this run() method. You
must override the run() method to implement the threaded code.

To start your thread, you cannot simply call the run() method of the Thread instance.
You must call the start() method of the Thread instance; the start() method will
invoke the run() method. As stated previously, threading varies extensively among
operating systems. When the programmer calls start() and the JVM calls run(), you
should be reminded that much must be accomplished behind the scenes before your
threads can run.

Creating Threads 333

The following code demonstrates the power of threads. You will run two infinite loops in
a "before threads" and "after threads" demonstration.

class ThreadStuff

{

 public static void main(String[] args)

 {

 MyThread myThread = new MyThread();

 myThread.start();

 while(true)

 {

 System.out.println("Main Thread");

 }

 }

}

class MyThread

{

 // Before we implement threading

 public void start()

 {

 run();

 }

 public void run()

 {

 while(true)

 {

 System.out.println("MyThread Thread");

 }

 }

}

334 Chapter 18—Creating Threads and Thread Methods

The output of this code is as follows:

MyThread Thread

MyThread Thread

MyThread Thread

.

.

Because this program is not threaded, you cannot display the message in both while
loops. Once you call start() in MyThread, it enters into an infinite loop, and the main
thread is blocked out, so it will never execute.

Programmers constantly encounter instances when two threads must begin running at
the same time. The solution to this problem is simple. By modifying the MyThread class,
you can remedy this example problem and write your first explicitly multi-threaded
application.

class MyThread extends Thread

{

 // After we implement threading

 // the MyThread class inherits the start() method from the

 // Thread class.

 public void run()

 {

 while(true)

 {

 System.out.println("MyThread Thread");

 }

 }

}

Creating Threads 335

Here, the MyThread class inherits from the Java Thread class, and therefore inherits all of
the behavior of the Thread class. The run() method has been overridden to provide the
functionality that we desire, so that when the start() method is called, the JVM creates
another thread in the program and switches between the execution of that thread and the
main thread. One possible output is the following, but this may vary each time it is run:

MyThread Thread

Main Thread

MyThread Thread

Main Thread

MyThread Thread

Main Thread

.

.

.

Implementing the Runnable interface

The previous example of multithreading by extending Thread was straightforward and
functional. This technique, however, has two serious drawbacks. The first is that Java
does not support multiple inheritance. Once you extend Thread, you have locked your
class into being a subclass of Thread, and you forfeit a degree of flexibility in your class
design.

The second drawback is that, in terms of design, the Thread class may not be an
appropriate superclass for your class. You wanted to gain the functionality of the Thread
class, yet by inheriting from Thread you are forcing yourself to assume a type that does
not support your class structure.

336 Chapter 18—Creating Threads and Thread Methods

The use of the run() method to write code has been discussed previously. The Thread
class implements the Runnable interface, and by contract must implement this method.
You can implement the Runnable interface for your class. See the following rewrite:

class MyThread implements Runnable

{

 // Rewrite using Runnable instead of Thread

 public void run()

 {

 while(true)

 {

 System.out.println("MyThread Thread");

 }

 }

}

Two words have been changed; this threaded class has now been rewritten to use the
second method of writing threaded classes. Now you must start your Thread.

Consider your Main class again; you instantiated the Thread and then started it by calling
its start() method as follows:

MyThread thread = new MyThread();

thread.start();

You cannot solve this problem with your modified thread because there is no start()
method. Remember that you are no longer inheriting from Thread, therefore you do not
have a start() method.

Creating Threads 337

You can solve this problem by using the Thread class constructor that takes an Object of
type Runnable. The delegation design pattern is very common in object-oriented design.
In essence, a front-end object delegates the responsibility of the work to some other
implementation object. You can now start your Runnable MyThread:

class ThreadStuff

{

 public static void main(String[] args)

 {

 Thread myThread = new Thread(new MyThread());

 myThread.start();

 while(true)

 {

 System.out.println("Main Thread");

 }

 }

}

Which technique?

The choice of technique deserves careful consideration.

Object-oriented purists would argue that one should never subclass another class without
the intention of further defining it. This point counters the subclassing technique,
because you do not add to the base class Thread.

The Thread class is such an inherent part of the Java language that it is almost a reusable
component, and is one of the easier elements of Java to understand. These points favor
the subclassing technique.

The interface technique is more difficult to understand. However, once understood, it
proves much more flexible, because it allows the class to inherit from another class. This
feature, combined with its adherence to the rules of subclassing, and its relationship to
the delegation design principle, makes it an elegant and recommended technique.

338 Chapter 18—Creating Threads and Thread Methods

A thread can be compared to a talented violinist: Playing solo is one skill, but playing in
an orchestra is completely different. So far, your MyThread has been playing solo; you
must now learn ways of orchestrating your threads.

A note should be made concerning three methods of the Thread class: stop(), suspend()
and resume(). These three methods have been deprecated with the release of Java SDK
1.2. The stop() and suspend() methods were prone to leaving a thread in an
inconsistent state; the resume() method is the counterpart to the suspend() method. In
the next lesson, you will learn some alternative techniques to replace these methods.

You can orchestrate your threads with the many thread-controlling methods available in
Java. Table 18-1 lists the methods you will use in this chapter to help control a single
thread. In the next chapter, you will learn ways of controlling many threads
simultaneously.

Table 18-1: Methods used to control a single thread

Method Description
currentThread() Returns an instance of the currently running thread.

getName Returns the name assigned to this thread.

notify() Notifies the single thread that initially called wait() on the object.

notifyAll() Notifies all threads that called wait() on the same object.

* resume() Resumes the execution of this thread (*deprecated).

run() Executes the body of the thread.

setName() Sets the name of the thread.

setPriority() Sets the priority of the thread.

sleep() Causes the currently running thread to sleep for a specified amount of time (in milliseconds).

* stop() Kills the thread (*deprecated).

Start() Calls the thread's run() method to begin executing the thread.

* suspend() Suspends execution of this thread until resumed (*deprecated).

yield() Causes the currently running thread to yield to other threads.

wait() Dictates that the calling thread give up the object monitor and sleep until it is notified by a later
thread.

Creating Threads 339

Thread states

Before you use any of the preceding thread-controlling methods, it helps to know the
various thread states and how these methods affect a thread's state.

The Java specification defines four thread states: new, runnable, not runnable, and dead.

New thread

A thread is in the new state after it is instantiated, but before it is started. The following
statement will place a thread in the new state.

MyThread myThread = new MyThread();

Runnable

A thread is runnable once its start() method has been called. It may seem odd to define
the state as runnable instead of running; however, this term is appropriate: a thread
spends much of its life on a thread queue waiting to be run. The following statement
places a thread in the runnable state.

MyThread.start();

Not runnable

Certain methods will remove a runnable thread from the active queue. The thread is then
not runnable. At this point, it cannot be placed back on the active queue until specifically
requested. In the next section, you will learn techniques for placing a thread in the not
runnable state. In essence, you will simulate the now-deprecated suspend() method of
the Thread class.

340 Chapter 18—Creating Threads and Thread Methods

Dead

A thread is dead once it has been explicitly stopped. You will simulate the now-deprecated
stop() method in the next section. A thread is also dead once its run() method exits
normally. In Java, dead is a permanent state; the thread cannot be resurrected.

Figure 18-2 illustrates the thread states.

Figure 18-2: Thread states

New Thread

Dead

Not RunnableRunnable

stop()

start()

stop()

suspend()

resume()

yield()

stop()

Creating Threads 341

The currentThread(), getName() and sleep() methods

To gain a better understanding of the methods of Thread, you can take a look at the most
commonly used thread, the main thread.

currentThread() and getName()

The currentThread() method allows you to obtain an instance of the currently running
thread, while getName() provides the String name associated with the thread.

class ThreadStuff

{

 public static void main(String[] args)

 {

 Thread myThread = Thread.currentThread();

 // Obtains an instance of the currently running thread

 System.out.println(myThread.getName());

 while(true); // Pause the command screen

 }

}

The output of ThreadStuff is as follows:

main

In the preceding code, the only thread running is the user thread main, which is supplied
by the JVM. When you ask for the current thread, you are guaranteed an instance of the
main thread.

342 Chapter 18—Creating Threads and Thread Methods

sleep()

The static method sleep() is a utilitarian method of Thread. You can specify the
number of milliseconds you want the current thread to sleep as an argument. However,
the call to sleep() may generate an InterruptedException, so you must invoke the
method in a try/catch statement, otherwise you will get a compiler error.

In the following code, you will display the name of your main thread, and then display an
additional message two seconds later.

class Main

{

 public static void main(String[] args)

 {

 Thread myThread = Thread.currentThread();

 System.out.println(myThread.getName());

 try

 {

 Thread.sleep(2000);

 }

 catch(InterruptedException e)

 {

 System.out.println(e);

 }

 System.out.println("2 seconds since our last message.");

 while(true);

 |}

}

You will use the sleep() method throughout this course.

Creating Threads 343

The setName() and setPriority() methods

setName()

The method setName() will associate a String name with a Thread. This function is
optional, but it may help you distinguish one thread from another when necessary.

MyThread myThread = new MyThread();

myThread.setName("My Thread");

setPriority()

The setPriority() method is an important method of Thread.

In the beginning of this chapter, we stated that Java followed a model of pre-emptive
multitasking. This model requires that one thread be able to pre-empt another thread.
This operation is accomplished by assigning a priority from one to 10 to any Java thread.

You need not assign a priority to a thread, since all threads automatically receive a priority
of 5 upon creation, including the main thread. However, if you create many threads, and
all have a priority of 5, then you need to ensure that you make your Threads behave
correctly. Methods for accomplishing this will be explained later in the text.

Set a thread's priority as follows:

MyThread myThread = new MyThread(); // Has priority of 5

myThread.setPriority(8); // Has priority of 8

Interestingly, this change in priority affects the behavior of your threaded program. To see
this, refer back to your well-behaved threaded example in which the main thread and the
myThread took turns displaying messages in an infinite while loop. Adjust only the
priority of the myThread.

344 Chapter 18—Creating Threads and Thread Methods

class ThreadStuff

{

 public static void main(String[] args)

 {

 MyThread myThread = new MyThread();

 myThread.setPriority(8);

 myThread.start();

 while(true)

 {

 System.out.println("Main Thread");

 }

 }

}

class MyThread extends Thread

{

 public void run()

 {

 while(true)

 {

 System.out.println("MyThread Thread");

 }

 }

}

The thread with highest priority does not necessarily claim all the CPU time. The nature
of thread behavior will varies greatly from system to system. When the author tested the
thread on Windows 95, a round-robin effect was produced: both threads were able to
display their messages, though an almost two-to-one ratio favored the thread with the
higher priority. Your operating system may behave differently. Suffice to say, a
programmer cannot rely on thread priority alone to control the behavior of threads.

Creating Threads 345

The yield() method

One way to force your threads to behave better is to use the yield() method. The thread
that is asked to yield() must relinquish its current running cycle to be placed on the
thread queue. A high-priority thread will be running again very quickly; however in the
interim, it will give some CPU time to other threads. It is a common thread technique is
to always yield() at some point within the body of a thread. For example:

class MyThread extends Thread

{

 public void run()

 {

 while(true)

 {

 System.out.println("MyThread Thread");

 yield(); // Relinquish some CPU time graciously

 }

 }

}

The yield() method provides an excellent way to create polite threads. In reality,
whenever a thread has completed a cycle of its responsibilities (for example, a
mathematical calculation or part of an animation), it should release the CPU to allow
processing time for other threads. Using the yield() method will facilitate this action.

346 Chapter 18—Creating Threads and Thread Methods

G R A D U A T I N G T A S K # 5 : C R E A T I N G A T H R E A D E D D I G I T A L
C L O C K

You have seen two ways to create threads, and used numerous methods of the Thread
class. In this exercise, you will expand on the Timer class to make it a threaded class. You
will use this thread-enabled Timer class to build a digital clock.

1. Create a class called DigitalClock that extends JFrame and implements
TimerInterface (from an earlier exercise). This class will serve as the GUI for your
digital clock and should resemble Figure 18-3.

Figure 18-3: DigitalClock interface

2. Using the interface technique for creating threads, modify your Timer class so it is
a threaded class.

3. Add a method to the Timer class called public void startTimer(). Invoking this
method will start the thread (the body of the run() method).

HINT: You will probably want to create an instance variable of type Thread in your
Timer class called timerThread. This timerThread variable will refer to the
run() method of your Timer class.

4. Event-enable your interface's Start button so that when it is clicked, the Timer
thread will start, and the time will be continuously updated on the JLabel. Note
the following considerations:

� You will use this Timer instance in several methods of your DigitalClock
class. Therefore, declare it as an instance variable.

� The remaining three buttons (Stop, Suspend and Resume) will be enabled in
the next chapter.

JLabel

Sun Certification 347

5. (Optional) Adjust the font of the JLabel so that the display is large and readable.
Perform any other cosmetic enhancements you deem necessary to the GUI.

6. (Optional) Convert your DigitalClock application into an applet.

S U N C E R T I F I C A T I O N

The two methods of creating a Thread (subclassing Thread or implementing Runnable)
will be tested on the exam. You should also understand the Thread life cycle, and know
that a dead Thread cannot be restarted. Understand that thread priority should not be
relied upon for deterministic programs, but only to provide a suggestion to the operating
system (which it may ignore completely in some implementations). The use of the
sleep() method is also tested on the exam.

Suspending and resuming threads, and the setting of names and daemons are not tested
on the exam, but they are useful if you want to create considerate programs.

S U M M A R Y

This chapter covered the two ways to create a process: extending the Thread class and
implementing Runnable. You also examined a few of the methods of Thread. In the next
chapter, you will learn how to control shared resources and coordinate the action of
several Threads.

348 Chapter 18—Creating Threads and Thread Methods

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. Explain the significance of the start(), run(), sleep(), wait(), notify(), and
notifyAll() methods?

...

...

2. What is a possible output to the following code? Is this output guaranteed to
always be the same?

public class MyThread2 extends Thread

{ public void run()
{
System.out.println("Run Thread "+

this.getName() +" going to sleep");
try { this.sleep(1000);
}
catch(InterruptedException x)
{
System.out.println("Run Thread sleep

interrupted");

 }
System.out.println("Run Thread "+

this.getName() +" waking
up");

}

Post-Test Questions 349

public static void main(String[] args)

{
MyThread2 t0 = new MyThread2();

 MyThread2 t1 = new MyThread2();

 t0.start();

 try { Thread.sleep(1000); }

 catch(InterruptedException x)
{

 System.out.println("Thread sleep interrupted");

 }

 t1.start();

 try

{

 System.out.println("Main Thread going to
sleep");

 Thread.sleep(1000);

 System.out.println("Main Thread waking up");
}

 catch(InterruptedException x)

{

System.out.println("Main Thread sleep
interrupted");

}

}

...

...

350 Chapter 18—Creating Threads and Thread Methods

M A J O R T O P I C SM A J O R T O P I C S

19

Synchronization

Objectives .. 352

Pre-Test Questions... 352

Introduction .. 353

What Is Thread Synchronization? 353

Thread Racing ... 353

Synchronized and the Object Monitor 355

Thread Race Condition ... 356

Sophisticated Thread Synchronization......................... 361

Deadlocks .. 368

Graduating Task #6: Enhancing the Digital Clock
with Advanced Thread Techniques 369

Sun Certification ... 370

Summary ... 370

Post-Test Questions ... 371

352 Chapter 19—Synchronization

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Define synchronization in relation to object monitors.

� Control Thread racing using Thread synchronization.

� Convert non-atomic processes to atomic processes to avoid Thread racing.

� Use sophisticated methods for controlling Threads.

� Stop, suspend and resume Threads.

� Explain Thread deadlock.

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. Explain how Java uses monitors in thread synchronization.

...

...

2. True or false: Every call to a wait() method must have a corresponding call to a
notify() or notifyAll() method.

...

...

3. Explain the difference between the notify() and notifyAll() methods.

...

...

Introduction 353

I N T R O D U C T I O N

When executing a Java program, the only process being executed for that program by the
operating system is the virtual machine. All activities of that program execute as threads
of that one process. For this reason, Java programmers should have a firm understanding
of the way Java handles multiple threads and synchronization.

W H A T I S T H R E A D S Y N C H R O N I Z A T I O N ?

You have already learned how to control independent threads. In realistic systems, where
more than one thread is competing for the same resource, you need more sophisticated
ways to manage the threads. If you do not manage your threads in a predictable manner,
you will likely produce corrupted data.

Java uses a method of controlling threads called synchronization. To appreciate the power
of thread synchronization, we will introduce and duplicate the problem of thread racing.
Later, through synchronization, you will solve these type of race conditions.

T H R E A D R A C I N G

An excellent example of thread racing is based on banking.

Assume that a husband and a wife use an ATM system that does not incorporate
synchronization.

The husband goes to the ATM to withdraw $250 from a joint checking account. The
wife does the same thing in another part of town. The checking account has only $300 in
it.

The husband checks to see that the account has at least $300 in it. The ATM shows that
the money is there. While the husband is preparing to withdraw the money, the wife
checks the same account on the ATM across town. The ATM shows the account has
$300 in it, so she also decides to withdraw $250 from the account. At the exact same
time they both type in the withdrawl. Since the ATM system has not synchronized the
two ATM’s, they both check to see that at least $250 is in the account and since it is, they
perform the withdrawl. The result is that the couple has now overdrawn their account.

354 Chapter 19—Synchronization

How can you prevent this problem? The account should have been made unavailable
until the entire process of the first transaction was complete. Only after that transaction
was completely finished should the second transaction have had access to the account. It
would have been apparent then that the funds were insufficient to grant the second
request.

The following is a pseudo-class that could have caused the flawed request. In this code,
there is no way of blocking access to the withdraw method.

class Account

{

 public double withdraw(double amount)

 {

 if(amount <= amountAvailable)

 {

 amountAvailable -= amount;

 }

 else

 {

 amount = 0; // return nothing – an error;

 }

 return amount;

 }

}

If multiple threads are running, you cannot guarantee which thread is executing what
part of that code at any time. In the above code, thread 1 could have executed the if
statement, and then the scheduler may have placed thread 2 onto the processor. It may
have executed the if statement and then continued and subtracted the amount. When
thread 1 comes back onto the processor, it will continue from where it was stopped.
Thus, it will execute the subtraction and the account will be overdrawn. In the previous
scenario, the mishap could have been avoided by use of an object monitor that allowed
single access.

Synchronized and the Object Monitor 355

S Y N C H R O N I Z E D A N D T H E O B J E C T M O N I T O R

An Object that contains a monitor is able to control its methods so that only one thread
has access to that object at a time.

You can associate a monitor with an Object by simply declaring a method as
synchronized. For example, if you consider your Account object, you can place a monitor
on that object by declaring its method synchronized. See the following:

class Account

{

 public synchronized double withdraw(double amount)

 {

 if(amount <= amountAvailable)

 {

 amountAvailable -= amount;

 }

 else

 {

 amount = 0; // return nothing – an error;

 }

 return amount;

 }

}

In this example, once a thread calls the withdraw() method, it obtains a lock from the
objects’s monitor. At this point, all other threads are blocked from executing this method
or changing anything in this object; any that attempt to do so are placed on a thread
queue. When the first thread exits the synchronized method, it releases the monitor
automatically. One of the threads on the wait queue may now execute the method and
obtain the monitor.

356 Chapter 19—Synchronization

If more than one method is declared as synchronized, then only one thread may execute
any of the synchronized methods at any one time. Only one monitor is present for each
object, therefore every synchronized method is locked when the monitor is obtained by a
thread. Even if only one synchronized method was entered by a thread, all synchronized
methods will be locked until the first thread exits its method and releases the monitor.

T H R E A D R A C E C O N D I T I O N

You will now create a race condition, then attempt to solve it. You will use the
RaceThread class.

class RaceThread

{

 MainThread m;

 RaceThread (MainThread tmpM)

 {

 m = tmpM;

 }

 public void run()

 {

 for (int i=0; i < 10; i++)

 {

 int c = m.getCount();

 m.setCount(c+1);

 }

 }

}

Thread Race Condition 357

Competing for resources

Creating a race condition is not difficult. Using your RaceThread from the preceding
example, you need to make only minor modifications. You will add a second RaceThread
so that two threads will compete to set the count value. You will also add a pause()
method to help magnify the race condition.

class MainThread extends CloseableFrame

{

 // All the GUI components... and in addition ...

 private int count;

 RaceThread raceThread1;

 RaceThread raceThread2;

 MainThread()

 {

 raceThread1 = new RaceThread(this);

 raceThread2 = new RaceThread(this);

 }

 public static void main(String[] args)

 {

 MainThread mainThread = new MainThread();

 mainThread.raceThread1.start();

 mainThread.raceThread2.start();

 }

 public void setCount(int tmpCount)

 {

 pause(50);

 count = tmpCount;

 textArea.append(count + "\n");

 }

358 Chapter 19—Synchronization

 public int getCount()

 {

 pause(50);

 return count;

 }

 public void pause(int milliseconds)

 {

 try

 {

 Thread.sleep(milliseconds);

 }

 catch(InterruptedException e)

 {

 System.err.println("MainThread: pause() " + e);

 }

 }

}

Threads are not guaranteed to execute in any particular order, nor are they guaranteed
any amount of processing time. Therefore, the results of the program will vary from
system to system, but the output will probably show a double print of the count, as
follows:

1

1

2

2

3

3

.

.

This is not the result you want. Each thread should be updating a unique count.

Thread Race Condition 359

Synchronizing the methods

The natural solution to your race condition is to synchronize your methods. We stated
earlier that when the synchronized keyword is added to a method, a thread is able to get
the monitor of that object, and prevent any other thread one of its synchronized
methods.

public synchronized void setCount(int tmpCount)

{

 pause(50);

 count = tmpCount;

 textArea.append(count + "\n

}

public synchronized int getCount

{

 pause(50);

 return count;

}

After running the program again, the result is the same:

1

1

2

2

3

3

.

.

Why? The synchronization should stop the race condition. This problem is not the fault
of the synchronization feature of the Java language; this problem is a design issue refered
to as an atomic process.

360 Chapter 19—Synchronization

Atomic processes

Atomic processes are processes that do not have intermediate states. In the example, the
task of updating the count variable in MainThread is not an atomic process. Consider the
following:

1. RaceThread1 performs a synchronized getCount(). It now exits that method for a
brief moment to increment the count in its run() method.

2. RaceThread1 now performs a synchronized setCount() method to set the
updated count variable.

The fact that there was a break in the complete process between the getCount() and
setCount() method calls means that the process was not atomic, and that RaceThread2
was able to slip in between these method calls and corrupt the data.

Conceptually, the solution is apparent: make it one process. The following is some code
that would make this an atomic process.

// Pseudo code for the solution

public synchronized void updateCount()

{

 int c = getCount();

 setCount(c + 1);

}

private int getCount()

{

 // return the count

}

private void setCount()

{

 // set the count

}

Sophisticated Thread Synchronization 361

Note two points:

1. Making getCount() and setCount() private is a design choice. If you are going
to increment count via the updateCount() method, do not make the methods
more accessible than necessary.

2. If getCount() and setCount() are only called internally from a synchronized
method, you do not need to make them synchronized as well; doing so will slow
the system.

S O P H I S T I C A T E D T H R E A D S Y N C H R O N I Z A T I O N

Java provides a more sophisticated way to synchronize threads: the methods wait(),
notify(), and notifyAll().

Normally, a thread is suspended and later resumed either by some external factor (such as
pushing a button) or by continuously polling for the condition upon which to change the
thread's state. Java has a poll-free mechanism to conditionally control threads through the
method invocations of wait() and notify()/notifyAll().

The wait() and notify() methods are not methods of Thread; they are methods of
Object, which proves that Java was originally designed as a multithreaded language. Since
every class is a subclass of Object, every class inherits all of Object’s methods. Although
wait() and notify() do constitute a form of thread synchronization, they do not solve
the thread race problem. In fact, the wait() and notify() methods must be called within
a synchronized block themselves. For this reason, the wait() and notify() techniques
are often regarded as a form of interthread communication.

An excellent example for the use of wait() and notify() is the consumer/producer
model.

362 Chapter 19—Synchronization

Consumer/producer scenario

A print queue represents a consumer/producer scenario. Although the following situation
is somewhat outdated, the skills learned here can be directly applied to other
consumer/producer scenarios, such as graphics.

A primitive computer (a producer thread) is going to print a document by placing it on a
print queue one character at a time. A primitive printer (a consumer thread) will take the
characters off the print queue and print them one at a time. The problem is that the
printer can print information only when the information is available. Therefore, two
possibilities must be considered. The first possibility is that no information is available to
print. The second possibility is that information is available to print. In this primitive
setup, we assume that the queue can only perform one operation at a time. It can allow
read access or write access, but not both.

No information is available for printing

If there is no information to print, then the printer must call wait() on itself until the
computer has placed some information in the print queue.

The wait() method can be called only from within a synchronized block. Therefore, the
printer will have had control of the object’s just before calling wait().

Once the printer calls wait() on itself, it is placed in a wait queue and relinquishes the
object’s monitor, allowing another Thread to gain access to the synchronized block. In
this case, the computer Thread.

The printer Thread will remain in this wait queue until an external Thread calls notify()
or notifyAll(). At this point, the printer Thread may now have access to the print
queue.

TECH NOTE:
When notify() is called, there is no way of knowing which waiting thread will
execute. It only guarantees that one waiting thread will be notified. If
notifyAll() is called, every waiting thread will be notified.

Sophisticated Thread Synchronization 363

Information is available for printing

If information is available for printing, the printer can take that information from the
print queue and print it.

Because information was available for printing, the printer must assume that the
computer is waiting for the opportunity to place more information on the print queue.

The printer can notify the computer that new information is available on the print queue
by calling notify() or notifyAll(). This action releases the computer from the wait
queue.

These steps could have been stated from the computer's perspective with no loss of
clarity. Overall, it is important to understand that the computer and printer take turns
working with the print queue. When one has access to the print queue, the other is
waiting in a wait queue until it is notified. This process continues back and forth.

You will now develop a more general consumer/producer system with the creation of four
classes.

// class One – the queue

class Q

{

// This class represents the queue. A producer thread

// will place information in the queue using the putData()

// method or wait. A consumer thread will get information

// from the queue using getData() or wait.

 boolean info_in_q = false;

 int data;

364 Chapter 19—Synchronization

 synchronized public void putData(int tmpData)

 {

 if(info_in_q)

 {

 try

 {

 wait();

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 }

 data = tmpData;

 System.out.println("Put: " + data);

 info_in_q = true;

 notifyAll();

 }

 synchronized public int getData()

 {

 if(!info_in_q)

 {

 try

 {

 wait();

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 }

Sophisticated Thread Synchronization 365

 info_in_q = false;

 notify();

 return data;

 }

}

// class Two – the producer

class DataProducer extends Thread

{

 // The DataProducer continuously places an

 // incremented integer into the Q.

 Q q;

 int data;

 DataProducer(Q tmpQ)

 {

 q = tmpQ;

 start();

 }

 public void run()

 {

 while(true)

 q.putData(data++);

 }

}

// class Three – the consumer

class DataConsumer extends Thread

{

 // The DataConsumer retreives the incremented

 // integer that the DataProducer placed in the Q.

366 Chapter 19—Synchronization

 Q q;

 DataConsumer(Q tmpQ)

 {

 q = tmpQ;

 start();

 }

 public void run()

 {

 while(true)

 System.out.println("Got: " + q.getData());

 }

}

//class Four – the dummy class

class Main

{

 // This class gets the ball rolling.

 public static void main(String[] args)

 {

 Q q = new Q();

 DataProducer producer = new DataProducer(q);

 DataConsumer consumer = new DataConsumer(q);

 }

}

Sophisticated Thread Synchronization 367

The output of the preceding class system resembles the following:

.

.

Put: 21

Got: 21

Put: 22

Got: 22

Put: 23

Got: 23

Put: 24

Got: 24

Put: 25

Got: 25

Put: 26

.

.

TECH NOTE:
It is important to note that there are some methods that are no longer used. The
methods stop(), suspend(), and resume() are all deprecated and should never be
used.These methods are considered to be inherently unsafe.

368 Chapter 19—Synchronization

D E A D L O C K S

Another common timing problem with threads is deadlock. This occurs when two or
more threads from different objects are waiting for the same object monitor. Consider the
situation illustrated in Figure 19-1.

Figure 19-1: Deadlock

Thread1 enters methodA() and obtains ObjectA's monitor. It then proceeds to methodB()
for further processing. However, at the same time, Thread2 obtains ObjectB's monitor,
then proceeds to methodA(). The two threads are now deadlocked, neither willing to give
up its own object monitor.

There are two different ways to deal with a deadlock. The programmer may either
attempt to detect a deadlock and recover from it once it has occurred, or he may write
code so that a deadlock cannot occur. The second is normally the easier and preferred
method. Unfortunatly, Java provides no built-in mechanism to avoid deadlocks, and the
programmer is responsible.

ObjectA
{

synchronized methodA()
}

ObjectB
{
synchronized methodB()

}

Thread1 Thread2

blocked

blocked

Graduating Task #6: Enhancing the Digital Clock with Advanced Thread Techniques 369

G R A D U A T I N G T A S K # 6 : E N H A N C I N G T H E D I G I T A L C L O C K
W I T H A D V A N C E D T H R E A D T E C H N I Q U E S

In the previous exercise, you created a DigitalClock class that had four buttons: Start,
Stop, Suspend and Resume. Only the Start button was implemented. In this exercise,
you will use more advanced threading techniques to implement functionality in the
remaining three buttons.

1. Add a method to the Timer class called public void stopTimer(). Invoking this
method will stop the thread.

2. Add a method to the Timer class called public void suspendTimer(). Invoking
this method will suspend the thread.

3. Add a method to the Timer class called public void resumeTimer(). Invoking this
method will resume the thread.

4. Event-enable the Stop, Suspend and Resume buttons on your interface so that when
those buttons are clicked, the appropriate method of the Timer class will be called.

5. (Optional) At this point, no code has been implemented in the startTimer(),
stopTimer(), suspendTimer() or resumeTimer() methods to create a robust
system.

� Modify your startTimer() method so that repeated attempts to call this
method will not repeatedly attempt to start your timerThread.

HINT: Test for null on your timerThread instance variable, defined in the hint
following Step 3 of the previous graduating task.

� Modify the stopTimer() method so that it will stop the timerThread only if it
is not null and if doRun is true.

NOTE: Be sure to set your instance of the timerThread to null, to aid the startTimer()
method.

� Modify the suspendTimer() method so that it will suspend the timerThread
only if it is not null and doSuspend is false.

� Modify the resumeTimer() method so that it will resume only if the
timerThread is not null and doSuspend is true.

370 Chapter 19—Synchronization

S U N C E R T I F I C A T I O N

Monitors and synchronized methods are included on the Sun certification examination.
Although not discussed in this section, any block of code can be synchronized by using
the keyword synchronized, followed by the object whose monitor the code needs to
acquire. For example, the following syntax will synchronize the currentAccount object
for a block of code:

synchronized (currentAccount)

{

 // this code would be synchronized

}

Although the resource will be an object reference, if the data to be locked is a class (static)
variable, then it is appropriate to synchronize the class name.

S U M M A R Y

This chapter discussed several methods used to protect data that is sensitive to change
caused by multiple threads. Remember that the more object monitors you place on a
program, the greater the likelihood of deadlock occurring. Experience will teach you what
must be monitored.

Post-Test Questions 371

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What exception is thrown if a thread uses a wait(), notify(), or notifyAll() without
having acquired a lock for the object?

...

...

2. True or False: Java prevents certain kinds of deadlock (locks that are never released)
by throwing an exception.

A. True

B. False

372 Chapter 19—Synchronization

M A J O R T O P I C SM A J O R T O P I C S

20

Streams and Serialization

Objectives .. 374

Pre-Test Questions... 375

Introduction .. 375

What Is a Stream? .. 376

InputStream, OutputStream, Reader and Writer.......... 377

Files ... 378

Stream Classes of java.io.*.. 382

Serialization ... 393

Graduating Task #7: Building a Simple
Word Processor .. 400

Sun Certification ... 401

Summary ... 403

Post-Test Questions ... 404

374 Chapter 20—Streams and Serialization

O B J E C T I V E S

At the completion of this chapter, you will be able to:

� Define a stream.

� Differentiate between byte streams and character streams.

� Recognize the abstraction of byte streams through the InputStream and
OutputStream classes.

� Recognize the abstract character streams through the Reader and Writer classes.

� Create and use File objects.

� Use System.in and System.out to perform stream operations.

� Nest streams using wrapper classes to enhance basic stream behavior.

� Perform File I/O.

� Define Object serialization.

� Use serialization to save an Object to a file, then deserialize that Object.

� Explain the transient keyword and issues relative to security.

Pre-Test Questions 375

P R E - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. What is a Stream?

...

...

2. Can Java create and check properties of files and directories?

...

...

3. What is Serialization?

...

...

I N T R O D U C T I O N

Communication between Java and computer hardware is accomplished through streams,
which have been used throughout this book. The System.out.println() method is an
example of stream usage. Java automatically initializes an output stream connection to the
command line. Without this function, programs would have no way of displaying output
to the user.

376 Chapter 20—Streams and Serialization

W H A T I S A S T R E A M ?

A stream is a path of information from a source to a destination. Though somewhat
vague, it is a widely applicable concept.

Some examples of elements that form a path of communication between a source and a
destination are:

� A keyboard (source) and a monitor (destination).

� A page of text on a monitor (source) and a file on a hard drive (destination).

� A file on a hard drive (source) and a monitor (destination).

� A Web server (source) and a browser (destination).

� A keyboard (source) and a string (destination).

� A text file (source) and a printer (destination).

It may seem daunting that a programmer should have to develop various programming
mechanisms to handle every stream possibility that exists. However, the process of
streams is a well-abstracted concept. Java takes advantage of this abstraction and provides
a rich set of classes to handle a wide variety of stream situations.

Because of the numerous ways that streams can be used, Java provides dozens of stream
classes. C provides only one type of stream, and Visual Basic only provides three; in that
respect, Java is much more complicated. However, by providing solid guidelines on how
to handle specific stream situations, Java code will be more robust and error-free.

Although there are dozens of streams, a programmer does not need to learn the more
than 50 different stream classes. Streams are well-organized, and can be classified as one
of four types: InputStream, OutputStream, Reader, and Writer.

InputStream, OutputStream, Reader and Writer 377

InputS T R E A M , OutputS T R E A M , Reader A N D Writer

With the introduction of the JDK 1.0, all streams in Java were subclasses of either an
InputStream or an OutputStream.

InputStream is an abstract class that provides the framework from which all other input
streams are derived. At the core of the InputStream is the read() method. The basic
read() method is abstract, but for the subclasses of InputStream, the method will simply
read a byte of information from a stream and return the byte as an int.

OutputStream is an abstract classt that provides the framework from which all other
output streams are derived. At its heart is the write() method, which takes an int and
writes a single byte of information to an output stream. All other stream input and
output is simply a variation of InputStream or OutputStream. You will see many
variations of the read() and write() methods, but remember that they are only
variations; the heart of input and output with the JDK 1.0 are the abstract classes
InputStream and OutputStream.

If all streams can be represented as variations of the InputStream and OutputStream, then
what purpose do the Reader and Writer classes serve?

In Section I, we said that Java takes an international approach to its characters. It adapted
a 16-bit representation of characters referred to as Unicode so that it could support many
languages. The problem with the InputStream and OutputStream of the JDK 1.0 is that
they were not designed to handle Unicode. For those classes that attempted to handle
Unicode, it was an incomplete solution.

The InputStream and OutputStream classes are designed to handle byte streams, while the
Reader and Writer classes are designed to handle character streams. In fact, the abstract
Reader and Writer classes serve the exact same role in character streams that the
InputStream and OutputStream classes serve in byte streams. All other Reader and Writer
streams are merely subclasses of these two.

378 Chapter 20—Streams and Serialization

TECH TIP:
Unicode characters are represented using a word, 16 bits; however, ASCII
characters are represented using a byte, 8 bits. For this reason, it is very difficult
for a stream that reads and writes bytes to deal with Unicode characters.
However, a character stream that reads and writes words can easily handle
bytes.

F I L E S

While File objects are used heavily with streams in reading and writing to a disk, a File
is not a stream.

File objects encapsulate what you would expect of a File class. Once you have an
instance of a File object, you can find the length of the file, determine whether the file is
readable or writable, rename the file, etc. With a File object, you can also create
directories or obtain directory listings.

Representing a file and its directory structure on many different operating systems poses a
problem. The easiest solution uses the FileDialog class; this class will automatically
respect the file conventions on the local system. The user will be able to choose files and
directories in a manner that is consistant with the system they are using.

Files 379

We will examine the File class to see the many functions you can perform with it, and
how you can address some of the cross-platform issues. Table 20-1 provides a listing of
the methods you will use.

Instantiating a File object

You can instantiate a File object in the manner you would expect:

File myFile = new File("SomeFile.txt");

In this case, you are creating a File object in the current directory of your program. If
you wanted to specify a File in a different directory, you must consider the operating
system being used.

On a Windows system, you can create a File object in another directory. See the
following:

File myFile = new File("/MyDocs/Java/SomeFile.txt");

File myFile = new File("\\MyDocs\\Java\\SomeFile.txt");

File myFile = new File("C:\\MyDocs\\Java\\SomeFile.txt");

TECH NOTE:
Notice that you had to double the backslashes in the second two examples.
Windows interprets a single backslash as an escape character.

Table 20-1: Methods of the File class

Method Description
exists() Returns a boolean describing whether or not a File exists

canRead() Returns a boolean describing whether or not a File can be read

canWrite() Returns a boolean describing whether or not a File can be written to

getPath() Returns a String with the path of the File

getFile() Returns a String with the name of the File

getAbsolutePath() Returns a String with the absolute path of the File

mkdir() Creates a directory from a File object

380 Chapter 20—Streams and Serialization

Windows is very flexible. Other systems are not, and you may have to use syntax such as
the following:

String myTmpFile = "/MyDocs/Java/SomeFile.txt";

myTmpFile = myTmpFile.replace ('/', File.separatorChar);

File myFile = new File(myTmpFile);

Working with a File object

Methods of File

Once you have your File object, you can use it for many functions. The following code
demonstrates a few examples. Assume that you have a file called SomeFile.txt in your
local directory that contains text.

import java.io.*;

class FileTests

{

 public static void main(String[] args)

 {

 File myFile = new File("SomeFile.txt");

 System.out.println("Exists:" + myFile.exists());

 System.out.println("Can Read:" + myFile.canRead());

 System.out.println("Can Write:" + myFile.canWrite());

 System.out.println("Path:" + myFile.getPath());

 System.out.println("Name:" + myFile.getName());

 System.out.println("AbsolutePath:"+myFile.getAbsolutePath());

 System.out.println("Length:" + myFile.length());

 }

}

Files 381

Directories

The File object is also the means by which you create directories and make directory
listings. If you want to make a directory called MyDirectory in your current directory, you
can create a File object with the name of the directory you want, and call the mkdir()
command.

File myDirectory = new File("MyDirectory");

myDirectory.mkdir();

If you want a listing of all files in a directory, you can again use the File object. In this
example, you will make a listing of your local directory.

File myLocalDir = new File(".");

String[] dirListing = myLocalDir.list();

for(int i = 0;i<dirListing.length;i++)

{

 System.out.println(dirListing[i]);
}

File Dialog (revisited)

In the AWT section of this course, you learned how to instantiate a FileDialog and
display it. Now you will learn how to work with FileDialog’s ability to deliver a file
name.

To cause a FileDialog to pop up, instruct it to display itself as follows:

FileDialog fileDialog=new FileDialog(this,"My Dialog",
FileDialog.LOAD);

fileDialog.setVisible(true);

// ... on to the next line in the program...

382 Chapter 20—Streams and Serialization

At this point, assuming the FileDialog is modal, the pop-up window will appear and
wait for the user to respond. Once the user has selected the file, the program flow returns
to the next line in the program. This is where you get the file name.

// ... the next line in the program after the user has

// selected a file.

// Get the absolute path of the file name in case the

// user browses to a directory other than the

// current one.

String myFile = fileDialog.getDirectory() + fileDialog.getFile();

Now the program has the absolute file name.

S T R E A M C L A S S E S O F J A V A . I O . *

Past sections have provided a class hierarchy to show the arrangement of classes discussed
in the section. It is difficult to do this with the stream classes, because they vary greatly.
Table 20-2 lists the most common classes.

Table 20-2: Useful Stream classes

Class Description Useful Methods

Classes for Byte Streams – JDK 1.0

InputStream The super class for all other
byte input streams

read() – An abstract method that reads a
byte and returns it as an int

OutputStream The super class for all other
byte output streams

write() – An abstract method that writes
an int representation of a byte

PrintStream An effective stream for
writing lines of text to an
output stream

println() – A useful method for outputting
text formats

DataInputStream An input stream filter class
that allows formatting for
incoming byte information

readLine() – Creates a line of text (but was
deprecated)

BufferedInputStream An input stream filter class for
adding buffering to input
streams

read() – Reads a specified byte length into
its buffer

Stream Classes of java.io.* 383

FileInputStream Creates an input stream from
a File

read() – Reads a byte of information from
a File

LineNumberInputStream An input stream filter class
that counts the number of
lines read

read() – Reads the byte stream tracking
the lines read

getLineNumber() – Returns the number of
lines read

Classes for Character Streams – JDK 1.1 and higher

Reader The super class for all other
character input streams

read() – An abstract method that reads a
Unicode character from an input stream

Writer The super class for all other
character output streams

write() – An abstract method that writes a
Unicode character to an output stream

PrintWriter An effective stream for
writing lines of text to an
output stream

println() – A useful method for writing to a
character output stream in text format

BufferedReader An input stream filter class for
adding buffering to input
streams

read() – Reads a specified character length
into its buffer

InputStreamReader A converter class that converts
byte streams to character
streams for input

read() – Reads a byte from a byte stream
and converts it into a character stream

FileReader Creates an input stream from
a file

read() – Reads a character from a file

OutputStreamWriter A converter class that converts
byte streams to character
streams for character output

write() – Writes a character to an output
character stream

FileWriter Creates an output stream to a
file

write() – Writes a character to a file

LineNumberReader An input stream filter class
that counts the number of
lines read

read() – Reads the character stream
tracking the lines read

getLineNumber() – Returns the number of
lines read

Table 20-2: Useful Stream classes

Class Description Useful Methods

384 Chapter 20—Streams and Serialization

System.in and System.out

To gain experience with streams, you should practice with them. Fortunately, Java
provides the equivalent of standard input (STDIN) and standard output (STDOUT) in
other programming languages: System.in and System.out.

System.in is an InputStream whose source is the keyboard. Keys pressed on the keyboard
are made available to the Standard.in stream. System.out is an OutputStream (in fact, it is
the PrintStream) whose output is the display monitor. You have been able to use
commands such as System.out.println("text") because System.out is a PrintStream
and it has a method called println() that takes a String as a parameter.

You will now use the System.in and System.out streams to practice with stream
concepts.

All Stream Classes
flush() Used with Writer and

OutputStream classes to
force any buffered bytes out

Must be used to see any output; ensures that
output streams are flushed

close() Closes input or output streams
and frees system resources,
which are limited

Automatically flushes output streams

Table 20-2: Useful Stream classes

Class Description Useful Methods

Stream Classes of java.io.* 385

Reading bytes from System.in

The most fundamental use of a byte input stream is reading bytes via the read() method.
You will notice with I/O operations that you are often forced to deal with exceptions.
This is reasonable if you consider all that can go wrong with I/O, including downed
networks, faulty hard drives, and deleted files. The following application reads
information from the system input stream. Run the application, then enter alphanumeric
characters. You must press ENTER after each character whose stream you want to read.
This application will read byte information you enter, then return the byte as an int. The
result is that you will see ASCII value for each character you enter.

import java.io.*;

class StreamExample01

{

 public static void main(String[] args)

 {

 // Access the System.in InputStream

 InputStream is = System.in;

 /

 {

 int i;

 // Loop until the letter 'q' is hit

 while((i = is.read()) != 113)

 {

 System.out.println(i);

 }

 is.close();

 }

 catch(IOException e)

 {

386 Chapter 20—Streams and Serialization

 System.out.println("main(): " + e);

 }

 }

}

Following is sample output for StreamExample01:

d

<ENTER>

100

13

10

r

<ENTER>

114

13

10

Oddly enough, this output is correct. Recall that the read() method of this application
reads a byte from the input stream, and returns the byte as an int. When you typed d
then the RETURN key to flush the stream, you saw the ASCII integer representation of the
letter d (100). Then the 13 and 10 are displayed, these numbers represent \r and \n,
which are escape characters for the return and end-of-line terminators used by Windows.
Finally, you exited the while loop by entering integer 113, which is the ASCII value for
the letter q.

If you want to see the ASCII character output instead of the integers, modify the code
and cast the int into a char as follows:

System.out.println((char) i);

Stream Classes of java.io.* 387

After casting the int i as a char, you receive the following output:

d

d

r

r

Now you see the appropriate characters with the new line and end of line characters.

As Java becomes more international, there will be an increased use of Unicode and a
deprecation of some byte stream classes, constructors, and methods. It is important for
the Java programmer to consider the character stream classes as his or her staple approach
to I/O.

Converting a byte stream into a character stream

Most of the Reader and Writer classes, character stream classes, cannot work with byte
streams and must use character streams. Java provides the necessary framework to convert
a byte stream into a character stream via InputStreamReader and OutputStreamWriter.
InputStreamReader converts a byte stream into a character stream for input, while
OutputStreamWriter allows you to specify a byte stream to which you can direct your
character stream.

388 Chapter 20—Streams and Serialization

This conversion is natural as shown by the following example. Although you see no
apparent difference between this example and the previous example, remember that
program output is now a character stream that transmits Unicode, instead of a byte
stream that transmits bytes.

import java.io.*;

class StreamExample02

{

 public static void main(String[] args)

 {

 InputStream is = System.in;

 InputStreamReader isr = new InputStreamReader(is);

 try

 {

 int i;

 while((char)(i = isr.read()) != 'q')

 {

 System.out.println((char)i);

 }

 isr.close();

 }

 catch(IOException e)

 {

 System.out.println("main(): " + e);

 }

 }

}

Stream Classes of java.io.* 389

Wrapper streams

Rarely would you want to work with single characters at a time; typically, you want to
read in lines of text. Java provides a clever approach to this demand by allowing you to
wrap streams within streams to gain the results you seek. The streams you use to wrap
other streams are not actually streams; they are filter classes that use a raw stream to
produce formatted results.

In the two previous examples, you were able to read only one character at a time. If you
want to read a whole line at a time, use a wrapper class. In this case, you need to use the
BufferedReader class.

The BufferedReader class offers two elements. The first is a method called readLine(),
which will read entire lines of text from a character stream. The second element offered is
buffering. Buffering delivers an efficiency that non-buffered streams cannot. A buffered
stream will read or write information into a buffer. Once the buffer is filled, subsequent
reads or writes will come from the buffer, instead of making repeated system reads or
writes. System reads and writes eat into resources. It is far less resource-consuming to
perform these reads and writes from a buffer. Streams should almost always be buffered.

Before you implement the necessary code, study Figure 20-1 to help you understand this
wrapper approach.

Figure 20-1: Wrapper streams

InputStream/System.in
InputStreamReader

BufferedReader

390 Chapter 20—Streams and Serialization

import java.io.*;

class StreamExample03

{

 public static void main(String[] args)

 {

 // Notice the nesting of streams

 InputStream is = System.in;

 InputStreamReader isr = new InputStreamReader(is);

 BufferedReader br = new BufferedReader(isr);

 try

 {

 String s = null;

 // For a String you test for null

 while((s = br.readLine()) != null)

 {

 System.out.println(s);

 }

 br.close();

 }

 catch(IOException e)

 {

 System.out.println("main(): " + e);

 }

 }

}

Stream Classes of java.io.* 391

Sample output for Example03 is as follows:

Once upon a time...

Once upon a time...

... there was a fairy princess...

... there was a fairy princess...

TECH NOTE:
It is necessary to close only the outermost stream in a series of nested streams.
Thus, you closed only the bufferered reader.

File I/O

Reading and writing to a File is one function you can perform with streams. In this
example, you will read from one File then write to a second. In essence, you are copying
the first File. You will need several more classes.

The FileReader and FileWriter classes allow you to read and write a raw character
stream to and from a File. However, you will also need to format the input and output
for line input and output. You have already been introduced to the BufferedReader for
the purpose of reading a line of text. The PrintWriter will allow you to write a line of
text to the output stream and thus, to the File. This stream is not buffered, but you can
add buffering if you choose.

For this example, assume there exists a text file called input.txt. The output file will be
called output.txt.

392 Chapter 20—Streams and Serialization

Notice that the FileReader and FileWriter classes must be instantiated inside of a
try/catch block. You choose to instantiate the BufferedReader and PrintWriter classes
in the try/catch because they are dependent on the FileReader and FileWriter classes.

import java.io.*;

class StreamExample04

{

 public static void main(String[] args)

 {

 File input = new File("input.txt");

 File output = new File("output.txt");

 FileReader fr = null;

 BufferedReader br = null;

 FileWriter fw = null;

 PrintWriter pw = null;

 try

 {

 // fr and fw must be declared in a try/catch block.

 fr = new FileReader(input);

 fw = new FileWriter(output);

 br = new BufferedReader(fr);

 pw = new PrintWriter(fw);

 String s;

 while((s = br.readLine()) != null)

 {

 pw.println(s);

 // Don't forget to flush the output stream.

 pw.flush();

 }

 // Don't forget to close your streams.

 br.close();

 pw.close();

 }

Serialization 393

 catch(IOException e1)

 {

 System.out.println("main(): " + e1);

 }

 }

}

Here, you read text from a file and saved that text to another file. In the next chapter, you
will see that Java also delivers the means to read and write complete object streams.

S E R I A L I Z A T I O N

In a typical object-oriented system, objects are instantiated and their internal states are
modified. After an object has reached a certain state, it may beacceptable that all the
information is lost when the system is shut down. However, if it is desirable to save the
state of an object, then you need a solution.

Several solutions can make an object persistent. One approach is to use force. If you have
an object of a certain type, you must be able to save its type, its internal information, and
information regarding references to other objects. You would save this information to a
file via a FileOutputStream. This process of saving objects is serialization. With the
release of JDK 1.1, Java provided a means of serialization that is effective and much easier
to implement than the brute-force method.

The applications for serialization are endless. The ability of objects to use objects across
different virtual machines is a primary use. RMI, which is Java’s version of a distributed
object protocol, uses serialization. JavaBeans also use serialization regularly. Sophisticated,
graphical beans must be saved upon creation to be used at a later time. Some graphical
IDEs will save the interface created by the user via serialization. With the flexibility that
objects and the object-oriented paradigm provide in system design, the ability to make
these objects and systems persistent is a powerful and useful mechanism.

394 Chapter 20—Streams and Serialization

The process of object serialization

Marking an object for serialization

Although serialization is part of the Java language, Java will assume that you do not want
an object to be serialized unless you mark it as such. To mark an object as serializable, you
must implement the Serializable interface.

import java.io.*;

class SampleObject implements Serializable

{

 // You will implement some sample code with this

 // sample object.

 String name;

 int age;

 public void setName(String name)

 {

 this.name = name;

 }

 public String getName()

 {

 return name;

 }

 public void setAge(int age)

 {

 this.age = age;

 }

Serialization 395

 public int getAge()

 {

 return age;

 }

}

The Serializable interface itself is rather mundane:

public interface Serializable

{

}

This code points out an important programming practice. You will often want to tag an
object as a certain type without specifying any functionality.

Writing the object to a file

In your example, you are going to save your SampleObject to a file. You can send your
object anywhere that you would normally direct an output stream.

To write an object to a stream, use the ObjectOutputStream class. This class is really just a
wrapper class, as you have used before, to wrap a FileOutputStream . You then will use
the writeObject() method of the ObjectOutputStream class to serialize the object.

import java.io.*;

class Main

{

 public static void main(String[] args)

 {

 try

 {

 // Get an instance of the SampleObjects and

 // set their state.

 SampleObject originalObj1 = new SampleObject();

 SampleObject originalObj2 = new SampleObject();

396 Chapter 20—Streams and Serialization

 originalObj1.setName("Mary Smith");

 originalObj1.setAge(32);

 originalObj2.setName("John Doe");

 originalObj2.setAge(42);

 // To write the object, you will need a

 // FileOutputStream and an ObjectOutputStream.

 FileOutputStream fos = null;

 ObjectOutputStream oos = null;

 fos = new FileOutputStream("SerializedObj.obj");

 oos = new ObjectOutputStream(fos);

 oos.writeObject(originalObj1);

 oos.writeObject(originalObj2);

 oos.close();

 }

 catch(Exception e)

 {

 System.out.println("Main: main(): " + e);

 }

 }

}

Saving the serialized object with the file name SerializedObj.obj was arbitrary,
including the file extension. Also, note that you are catching the exception using
Exception. This step is not recommended; however, there are many exceptions to catch
in these examples. To help keep the focus on topic, we have elimnated as much code as
possible.

Serialization 397

Reading the serialized object from a file

Once you have a serialized object saved to disk, you can read it in much the same manner
that you wrote it. Instead of a FileOutputStream, you now need a FileInputStream;
instead of an ObjectOutputStream, you have an ObjectInputStream.

import java.io.*;

class Main

{

 public static void main(String[] args)

 {

 try

 {

 // Get an instance of the SampleObjects

 // and set their state.

 SampleObject originalObj1 = new SampleObject();

 SampleObject originalObj2 = new SampleObject();

 originalObj1.setName("Mary Smith");

 originalObj1.setAge(32);

 originalObj2.setName("John Doe");

 originalObj2.setAge(42);

 // To write the object, you will need a

 // FileOutputStream and an ObjectOutputStream.

 FileOutputStream fos = null;

 ObjectOutputStream oos = null;

398 Chapter 20—Streams and Serialization

 fos = new FileOutputStream("SerializedObj.obj");

 oos = new ObjectOutputStream(fos);

 oos.writeObject(originalObj1);

 oos.writeObject(originalObj2);

 oos.close();

 // To read the objects, you will need a

 // FileInputStream and an ObjectInputStream.

 FileInputStream fis = null;

 ObjectInputStream ois = null;

 fis = new FileInputStream("SerializedObj.obj");

 ois = new ObjectInputStream(fis);

 SampleObject newObj1 = (SampleObject) ois.readObject();

 SampleObject newObj2 = (SampleObject) ois.readObject();

 ois.close();

 // And the results:

 System.out.println("SampleObject1 name: " +

 newObj1.getName());

 System.out.println("SampleObject2 name: " +

 newObj2.getName())

 }

 catch(Exception e)

 {

 System.out.println("Main: main(): " + e);

 }

 }

}

Serialization 399

Two points should be noted about the preceding example:

� You must read the objects from the file created by an object stream in the same
order that you wrote them.

� Because the readObject() method returns an Object, you must perform an
explicit cast the moment you read the Object from the object stream. That is,

SampleObject newObj1 = (SampleObject) ois.readObject();

SampleObject newObj2 = (SampleObject) ois.readObject();

These steps are necessary if you want to use the methods available with this typed object.
However, keep in mind that you should always keep track of the type of object you are
reconstituting. As your serialized systems become bigger (and less manageable), you
should consider other ways of determining object type.

The objects originalObj1 and newObj1 do not occupy the same memory space. One
object will not affect the other. Of course, the same is true for originalObj2 and newObj2.

Transient variables and security

It is possible that within an object marked as serializable, you do not want some variables
to be put into a persistent state. For example, you might have a variable in your object
that always depends on the current system date. In such a case, there is no purpose in
serializing this date variable because it will have no meaning when the object is
deserialized. You can prevent an instance variable from being serialized by using the
transient keyword. Consider the following example:

import java.util.*;

class TrivialObject implements Serializable

{

 transient Date currentDate;

 transient private int accountID;

}

In this code, you made the currentDate variable transient because it relies on the
current date and need not remember any past dates. But, is the accountID variable also
persistent?

400 Chapter 20—Streams and Serialization

One of the disadvantages of serialization is that private members are also serialized. In
essence, this information can be exposed or corrupted during the serialization process.
For security, you should never underestimate the desire or ability of others to gain access
to this information. Therefore, a programmer may choose not to serialize the accountID
variable. A TrivialObject instance would have to obtain the accountID in some other
way.

TECH TIP:
Static variables are (by default) not serializable. The transient keyword has
no significance with a static variable.

G R A D U A T I N G T A S K # 7 : B U I L D I N G A S I M P L E W O R D
P R O C E S S O R

The ability to handle I/O is a staple element in any programming language. In this
exercise, you will perform I/O with Strings by building a simple word processor to read
a text file’s contents to a JTextArea. Additionally, you will be able to save the contents of
the JTextArea to a file under a different name. The contents of the JTextArea will be
cleared as well.

1. Create a class called WordProcessor that extends JFrame. This class will serve as the
GUI for your word processor and should resemble Figure 20-2.

Figure 20-2: Word Processor GUI

JTextArea
within a
JScrollPane

Sun Certification 401

NOTE: You should use the FileReader, BufferedReader, FileWriter and
PrintWriter classes for Steps 2 and 3.

2. Event-enable the Open button. Upon clicking this button, a JFileChooser should
appear in "open" mode, starting with your root directory (c:\ on a Windows
system). Selecting (or typing) a text-based file to open will output its contents into
the JTextArea.

3. Event-enable the Save button. When this button is clicked, a JFileChooser should
appear in "save" mode, starting with your root directory (c:\ on a Windows
system). Selecting (or typing) a file name will save the contents of the JTextArea to
the hard drive under that chosen file name.

4. Event-enable the Clear button. When this button is clicked, the contents of the
JTextArea will be cleared.

5. (Optional) In addition to displaying the contents of the selected file, also show the
name, length and date last modified of the file in the JTextArea (consult your
API).

S U N C E R T I F I C A T I O N

The Sun certification exam covers two basic types of streams: filter streams and file
streams. The two basic file streams are FileInputStream and FileOutputStream, which
are derived from the abstract classes InputStream and OutputStream, respectively. The
constructors for FileInputStream and FileOutputStream will return a stream object,
which is then used to create the filter streams. In preparing for the exam, you should
understand how to use the constructors to create a stream.

The filter streams are subclasses of FilterInputStream and FilterOutputStream. Filter
streams are used to process bytes in different ways. For example, the class
DataInputStream allows you to read Strings and primitive, unlike the bytes read by
FileInputStream. You should know the subclasses of FilterInputStream and
FilterOutputStream for the exam. They are as follows:

402 Chapter 20—Streams and Serialization

FilterInputStream

LineNumberInputStream

BufferedInputStream

DataInputStream

PushbackInputStream

FilterOutputStream

PrintStream

BufferedOutputStream

DataOutputStream

At the time of this writing, the Reader and Writer streams were not included in the
examination, so use the DataInputStream and PrintStream.

Questions about the File object, which was discussed earlier in the lesson, also appear on
the exam.

The RandomAccessFile object is tested on the exam. The constructor for the object gives
you functionality to assign a mode, either r (read) or rw (read/write) for a File.
RandomAccessFile has a method called seek(), which allows you to find a certain point
in the file. The RandomAccessFile object implements DataInput and DataOutput, so it
contains methods for reading and writing various primitives and Strings. However, it is
not an InputStream or OutputStream, therefore it cannot be used with the filter streams.

NOTE: It is very common for questions about stream and filter constructors to appear
on the exam. You should know the hierarchy of all of the streams discussed in
this chapter. Also, you should know the possible modes for files and how to use
them.

Serialization composes only a small portion of the Sun Certified Java Programmer exam.
You might be asked a simple question about the purpose of serialization. However, you
will use serialization extensively in your programming assignment for the Sun Certified
Java Developer exam.

Summary 403

S U M M A R Y

Although many different streams exist, they can be easily organized into a few broad
categories. The differences depend on what types of data each stream manipulates, and
the direction of the stream (input or output). In this chapter, you dealt with primitive
data types and Strings. You also learned how to save the persistent state of an object
using serialization. Although you saved object states to a file, you will learn in the next
chapter that the same streams can be sent across a network, making the implementation
of your chat server possible.

404 Chapter 20—Streams and Serialization

P O S T - T E S T Q U E S T I O N S

The answers to these questions are in Appendix A at the end of this manual.

1. Can a BufferedReader have a constructor with a InputStreamReader in it?

...

...

2. Can private variables be made transient?

...

...

3. What command do you use if you are writing to a file with an OutputStream class
and you want to prevent ‘garbage’ from being written?

...

...

4. Will this compile, and if so, where will the input come from?

InputStream is = System.in;

InputStreamReader isr= new InpuStreamReader(is);

BufferedReader br= new BufferedReader (isr);

...

...

405S E L F - S T U D Y

Appendix A—Answers to
Pre-Test and Post-Test Questions

C H A P T E R 1

Pre-Test Answers

1. .java

2. .class

Post-Test Answers

1. To compile a file this is what needs to be typed.

javac filename.java

2. To execute a program this command needs to be entered

java filename

C H A P T E R 2

Pre-Test Answers

1. There are 8 types: double, float, long, short, int, char, boolean and byte.

2. int test = 5;

3. The value of a short can be assigned to a long, but the value of a long cannot be
assigned to a short with out an explicit cast.

4. The “=” symbol is used for assignement, and the “==” symbol is used for
comparison.

406 Appendix A—Answers to Pre-Test and Post-Test Questions

Post-Test Answers

1. boolean and byte both occupy 8 bits. short and char both occupy 16 bits. int and
float both occupy 32 bits, and double and long both occupy 64 bits.

2. ||

3. A local variable is defined inside of a method and is only within scope in that
method. Class variables are defined underneath a class outside of all methods and
are accessible everywhere within the class. Local variables must be initilized before
use.

4. a: 2

b: 1

5. A static variable maintains a single copy in memory that is in use by all instances,
while an instance variable establishes seperate copies for each object instance.

C H A P T E R 3

Pre-Test Answers

1. The if statement is used to control the flow of a program by checking certain
boolean expressions.

2. The try, catch, finally construct is the mechanism which provoides exception
handling in Java. This way the program may handle errors which are generated
during runtime, providing robustness code.

Post-Test Answers

1. The variable in the switch statement must be of the int, short, byte or char types.

2. The break statement is optional inside of a switch construct, but it should be used
to insure program correctness.

3. The loop will iterate as least once.

Appendix A—Answers to Pre-Test and Post-Test Questions 407

C H A P T E R 4

Pre-Test Answers

1. An inner class is a class that is located inside of another class. This construction is
used mostly for anonymous calls to Event Handlers and for specialized functions.

2. Command line arguments are found in the args[] String array that is declared as a
parameter in the main method.

Post-Test Answers
1. The index of the first element of the array is zero.

2. A method is overloaded in Java by creating two methods that have the same name
and different parameters.

3. Local. When the method ends, the all local variable becomes eligible for garbage
collection.

C H A P T E R 5

Pre-Test Answers

1. An array is linear collection of variables of a single data type that can be accessed
via an integer index.

2. To declare an array of ten elements

int arr [] = new int[10];

3. Yes you can. It is the same as converting a int to a long

Post-Test Answers
1. You access the word is by using

public static void main (String args[]){ String word = args [3];

2. B, C

3. Use a for loop and assign the counter to the array.

408 Appendix A—Answers to Pre-Test and Post-Test Questions

C H A P T E R 6

Pre-Test Answers

1. A class is a logical encapsulation of related data and code.

2. An object is an instance of a class.

3. A method is a Java subroutine consisting of a header that indicates the return type,
name, and parameters of the method, and a method body that contains the code
that the method executes.

Post-Test Answers

1. A class is a logical encapsulation of data. An object as an instance of a class.

2. Employee Dave = new Employee()(JRE);(JRE)

3. double someDouble = Dave.getPay();

C H A P T E R 7

Pre-Test Answers

1. Encapsulation is when the code is hidden from the user and the data and
implementation are grouped together.

2. Create a class Employee and a class Nurse. The class Nurse should be a subclass of
Employee and the Nurse class should have a method called getPay() as well, this
method will override the getPay() method of class Employee for all Nurse objects.

Post-Test Answers

1. To create a new instance from the class Employee, the following code would be
used.

Employee jim = new Employee();

2. To call a parental class constructor, use the keyword super() with any arguments as
parameters.

super(string, integer);

3. LASTFIRST would print because the calculate (int number) is called first and
then calculate (doublenum) would be called

Appendix A—Answers to Pre-Test and Post-Test Questions 409

C H A P T E R 8

Pre-Test Answers

1. A constructor initializes any graphics, variables and uses anything from the super
class.

2. Use the command form: Class.method();

3. No, the String class is immutable.

Post-Test Answers

1. Hello

2. Hello World

3. Sub Super

C H A P T E R 9

Pre-Test Answers

1. Public class className implements interfaceName

2. Polymorphism is using one method (JRE) call(JRE) to invoke several different
methods.

3. An incompletely defined class used to collect properties or behaviors of other
classes with similiar attributes. Abstract classes are never instantiated.

Post-Test Answers

1. This code can be executed. The class Student is never directly instantiated. The
classes Undergraduate, Graduate and Alumni may be considered objects of class
Student because they extend the abstract class. This grants them access to all of the
methods of the class Student. The program, then, finds the amount owed by all
students.

C H A P T E R 1 0

Pre-Test Answers

1. Listener classes accept various actions and implements the result.

2. The Math class provides various methods to perform on variables.

3. It returns an long that is closest to the float or double provided.

4. The elements in a Set are unique.

410 Appendix A—Answers to Pre-Test and Post-Test Questions

Post-Test Answers

1. The protected access modifier allows package access only and derived classes. The
synchronized access modifier denotes that it only available to one thread at a time.

2. The code returns 9.

3. A List.

4. A Map implements a key value pair and contains no duplicate keys.

C H A P T E R 1 1

Pre-Test Answers

1. The AWT is the Abstract Windowing Toolkit package that allows Java
programmers to create user interfaces that use native operating system
components.

2. Swing is a set of light weight components that are built on the top of the AWT. It
also provides a pluggable look and feel to allow for the application to change how
it looks. All Swing components implement Java Bean technology.

3. A JApplet component would be used if you wanted use Swing components in a
Web browser.

4. JavaBeans technology is a specification of a software component model. JavaBeans
are designed according to a strict specification so they can be easily integrated into
sophisticated applications as separately developed components. JavaBeans are self
contained code that can be implemented with the idea of “Software Reuse”.

Post-Test Answers

1. The first line of code creates an ImageIcon using the image save_button.gif, the
second line creates a JButton with the image on it.

2. A JScrollPane adds scrolling functionality to other components.

3. A modal component is one which blocks its parent component until it is properly
responded to. A modal component will retain focus until an action has been taken
on the window. A JFileChooser is an example of a modal Swing component.

Appendix A—Answers to Pre-Test and Post-Test Questions 411

C H A P T E R 1 2

Pre-Test Answers

1. A Layout Manager dictates how graphical components will be placed.

2. They are located in java.awt package.

Post-Test Answers

1. FlowLayout is the default Layout Manager.

2. There are 5 fields. North, South, East, West and Center.

3. GridBagLayout will not allow components to change size if the weights are set to
zero.

C H A P T E R 1 3

Pre-Test Answers

1. The AWT package in Java provides a set of classes to create graphics, the Graphics
class, the Color class, and the Font class.

2. To draw text and shapes on the screen you would use the Graphics class and its
appropriate methods.

3. Java is capable of displaying 16.7 million colors.

4. There are only a few fonts available to all JVMs in order to provide complete
platform independence in Java.

Post-Test Answers

1. The coordinate system in Java has its origin at the upper-left corner of the system.

2. The code would create a JFrame and draw 75 blue rectangles increasing the size of
the rectangles with each pass through the for loop.

3. The code would use a SansSerif font, it would be italic and 20 point.

4. The code would be used as a typical main method in a Java program. It provides
for the event of the user closing the window in which the program is running.

412 Appendix A—Answers to Pre-Test and Post-Test Questions

C H A P T E R 1 4

Pre-Test Answers

1. Any defined occurrence from the user or the program.

2. Button clicking, keystrokes, mouse movements, etc.

Post-Test Answers

1. Yes, from the Abstract Button class.

2. How is the event generated?

How does the generator of the Event know where to send the Event object?

How does an Event listener receive the Event object?

What happens once a listener has received an Event?

C H A P T E R 1 5

Pre-Test Answers

1. An inner class is a class that is defined inside another class.

Post-Test Answers

1. Inner classes can be used for event handlers, and can be called anonymously. It is
for small operations that are only to be used once.

Appendix A—Answers to Pre-Test and Post-Test Questions 413

C H A P T E R 1 6

Pre-Test Answers

1. An applet is Java code that is designed to run in a browser.

2. Yes, a main() method may be added to applet to make it into an application.

Post-Test Answers

1. You can pass parameters to can applet by using the code below

--In the HTML page--

<APPLET CODE=”MYAPPLET.CLASS”<param name=”number” value=”4”>
</APPLET>

--In the Applet Code --

int appletnumber;

appletnumber = new Integer(getParameter(“number”)).intValue;

2. The security restrictions are:

� Applets cannot run any executable code on the local machine.

� Applets can only establish a network connection with the host they were
downloaded from.

� Applets can neither read nor write disk information to the local machine.

� All pop up windows have a warning at the top of the window.

C H A P T E R 1 7

Pre-Test Answers

1. An Exception is an abnormal condition which occurs during execution of the
program and which a reasonable program may wish to handle. Exceptions that
may occur in the usual operation of the Java Virtual Machine are descended from
RuntimeException.

2. An Error is a serious condition which should stop a program while an Exception is
a condition from which the program may recover. An Error may not be caught, as
a program should cease execution if one occur.

414 Appendix A—Answers to Pre-Test and Post-Test Questions

Post-Test Answers

1. The code will print

ERROR

TEST

2. The throw keyword passes the Exception to the caller method to be dealt with
there.

3. You can:

� Ignore the Exception

� Handle the Exception in a try/catch block

� Rethrow the Exception to the calling method

� Throw the Exception and handle it in the try/catch block of the caller
method.

C H A P T E R 1 8

Pre-Test Answers

1. A thread is a designated portion of a program that may execute concurrently with
other threads and programs. A thread may be thought of as a lightweight process
that executes within the memory space of its parent process. Java’s built in
capabilities provide the programmer with a rapid way to develop multithreaded
applications.

2. A new thread of execution may be created either by extending the Thread class or
implementing the Runnable interface.

3. A thread may not run if it is blocked waiting on a synchronized resource currently
in use by another object. A thread may also have been preempted by a thread with
higher priority or may have been the target of a wait(), sleep(), or similar method.

4. If a method has the synchronized keyword in its header, that method is monitored
and can only be executed by one thread at a time.

Appendix A—Answers to Pre-Test and Post-Test Questions 415

Post-Test Answers

1. The start() method launches the thread’s execution, in turn calling the thread’s
run() method. The run() method does the main work of the thread and must be
overridden in a subclass of Thread, or in the Runnable object. The sleep() method
puts a running thread into a sleeping state and it does not become ready for
execution again until the sleep time expires. The wait() method tells the thread to
sleep until it is notified by another thread via the notify() or notifyAll() methods.

2. Run Thread Thread-0 going to sleep

Run Thread Thread-0 waking up

Main Thread going to sleep

Run Thread Thread-1 going to sleep

Main Thread waking up

Run Thread Thread-1 waking up

No, the timing of concurrent threads is not specified, and program correctness
should not rely on a specific timing or ordering of execution.

C H P A T E R 1 9

Pre-Test Answers

1. To preform synchronization, Java uses monitors. If an object contains methods
that are synchronized, that object is a monitor. The monitor permits one thread at
a time to execute synchronized methods on an object. The object is said to be
locked when a synchronized method is invoked. Thus, all other threads
attempting to call the synchronized object must wait until the synchronized object
is finished executing.

2. True

3. The notify() method allows a waiting thread to become ready for execution, while
the notifyAll() method permits all threads waiting for the object to become ready
for execution.

Post-Test Answers

1. IllegalMonitorStateException

2. A. True

416 Appendix A—Answers to Pre-Test and Post-Test Questions

C H A P T E R 2 0

Pre-Test Answers

1. A Stream is a one way data channel. Information flows through Streams allowing
data to pass from one source to another.

2. Yes. The File class allows for the creation of directories and the ability to check for
properties of files and directories. Java may create files with the File class and the
OutputStream classes.

3. Serialization is Java’s mechanism for preserving the state of an object by writing
that object through a byte stream to disk so that byte stream may be read back in at
a later date and that object be restored. Serialization is implemented using the
Serializable interface.

Post-Test Answers

1. Yes it may. Many streams may be chained together to provide multiple options for
filtering I/O.

2. Yes, private variables have to be made transient due to security concerns.

3. Use the flush() method.

4. Yes, it will compile, and the input will come from the keyboard.

417
S E L F - S T U D Y

<APPLET></APPLET>
HTML (Hyper Text Markup Language - the language used to code web pages) tags used to embed an
applet.

abstract
A class or method that is incompletely defined, used to collect shared properties, behaviors, or
attributes in a single superclass.

Abstract Windowing Toolkit (AWT)
A package of Java classes that support GUI (Graphical User Interface) programming - part of the JFC
(Java Foundational Classes).

abstraction
The consideration of an object in terms of its functionality and not its implementing details (see also
abstract).

accessor
A method designed to allow outside classes to access information about an object while maintaining
the principles of encapsulation and information hiding.

add()
A method of Container used to add components to a GUI container.

addItemListener()
One of a series of methods that register a listener object with its source for notification of some
specified change of state; this method is always of the form addSomeListener().

ALIGN
Optional attribute which can be imbedded within APPLET tags in HTML code; specifies the
position of the applet.

allocate
Java sets aside (allocates) enough space in memory for a data structure as soon as it is fully defined;
connected with the idea of instantiation.

ALT
Optional information to embed an applet; allows you to display a comment to a Java-disabled
browser.

anonymous inner class
An inner class defined within an expression; not a top level class which is part of a package.

applet
A small Java program that must be run from a Web browser or the Appletviewer; more restricted in
permitted activities than applications for security reasons.

Glossary

418 Application Programming Interface (API)

Application Programming Interface (API)
The pre-written code that provides the built-in functionality of Java. The term is also used to refer to
the organized descriptions of classes and their methods within this pre-written code.

arithmetic operators
Operators that perform manipulation on numbers.

ASCII
A standard means to represent characters as integers ranging from 0 to 127.

atomic process
Refers to an operation that is never interrupted or left in an incomplete state under any circumstance.

bitwise operators
Operators that perform logical manipulation comparing and changing each bit.

boolean expression
An expression that returns true or false; the result of a relational or logical operation.

BorderLayout
A layout manager that adds components in specified regions.

BoxLayout
A layout manager that adds components horizontally or vertically.

break
A statement that causes the current conditional or iteration statement to terminate.

bytecode
A platform-neutral file consisting of bytes that the JVM can execute.

callback
When an object refers back to a class to which it has gained reference.

casting
Converting values from one data type to another.

class
One of the most fundamental parts of Java (and other object-oriented languages) data structure.
Classes contain methods, variables, and even other classes. Top-level classes belong to a package.

class member
A variable or method that exists only once for the class regardless of how many objects are created;
designated by the keyword static.

CODE
Essential information needed to embed an applet; specifies the name of the applet class. Example:
<APPLET CODE=AppletSubclass.class WIDTH=anInt HEIGHT=anInt>

</APPLET>

code block
A sequence of statements contained in curly braces.

CODEBASE
Optional information to embed an applet; specifies a relative directory in which to save the applet
class. Example: CODEBASE="someDirectory/"

event 419

Color
A class of the AWT that represents colors.

concatenation
The act of adding Strings together.

constructor
A special method having the same name as its class. It returns an instance of its class.

Container
An abstract, high-level component that offers JFrame and JPanel much of their functionality.

cooperative multitasking
A system of multitasking in which one task must willingly yield to another task.

coupling
The level of interdependency between objects.

daemon thread
A thread designed to service user threads. Daemon threads terminate after the last user thread
terminates.

dead
The state of a thread once it has been stopped or the run() method has exited.

deadlock
A condition that occurs when two or more threads reach an impasse due to competition for object
monitors.

default constructor
A constructor without parameters; Java assumes a default constructor until you define your own.

destroy()
The last method called in the life cycle of an applet; should be used to release system resources.

Domain Name System (DNS)
A system that converts domain names into corresponding IP addresses.

dot notation
A reference used to access a member of an object.

drawRect()
A method of the Graphics class.

encapsulation
The wrapping of variables and methods together; variables can only be accessed through the methods
provided.

entry condition/ exit condition
Condition based on whether the boolean expression is evaluated at the beginning or the end of the
loop.

Error
An inoperable condition that can occur in a program and cause it to terminate.

event
An occurrence or happening such as a pre-defined change of state in a component.

420 event delegation model

event delegation model
The event handling model used in JDK 1.1 and SDK 1.2.

event object
The informational object Java creates in response to an event.

Exception
An abnormal condition that occurs in a program; also the name of a class in java.lang. An
elaborate system of exception handling functionality exists within the JFC.

extends
The Java keyword that designates the class that a new class is to be derived from.

File
A Java class abstracting the nature of a system file.

FlowLayout
A layout manager that adds components centered on each line, top to bottom, in a flowing manner
similar to the layout of HTML pages.

Font
A class of the AWT that represents fonts.

getParameter()
A method of Applet used to obtain the name/value pairs sent by the HTML page.

Graphics
An abstract class used to get a graphics context of a Component or Image.

graphics context
The workable representation of the Graphics class for a Component or Image.

GridLayout
A layout manager that adds components in a grid-like format.

handleEvent()
The method most widely used in the JDK 1.0 to handle event processing.

ID
A way of distinguishing the type of event generated.

identifier
Another term for a variable name.

if statement
The basic conditional statement; chooses different control flow paths based on the value of some
boolean statement.

ImageIcon
A class that facilitates the display of images; implements the Icon interface

immutable
Unable to be changed; a characteristic of Strings.

implicit vs. explicit casting
Explicit casting requires you state the type name being converted to; in implicit casting, the type is
implied.

JComponent 421

import
A statement that makes a package available for use within a class.

index
A numeric reference to a specific element of an array; the only way to access elements of an array.

inheritance
Properties or attributes of a class which are not explicitly stated but passed down from its
superclass(es).

init()
The first method called in the life cycle of an applet; it resembles a constructor.

inner class
A class defined within the body of another class.

InputStream
The abstract class from which all other input byte streams are derived.

InputStreamReader
A utility stream that converts a byte stream into a character stream for input.

instance and class variables
Variables defined outside of any method; they are available throughout the class.

instance member
A variable or method unique for each object (instance of the class).

instantiation
The use of a class definition to create an object.

interface
Term used to define a collection of method definitions and constant values which can be
implemented by classes that define this interface with the "implements" keyword.

IP (Internet Protocol) address
A numeric configuration used to identify a unique computer on the Internet.

java
The command given to execute bytecode (*.class) file.

Java 2 Software Development Kit (SDK)
A set of Java tools available from Sun for free; includes the Java compiler, interpreter and debugger,
along with documentation.

Java Virtual Machine (JVM)
The artificial computer that runs Java programs.

javac
The command that compiles a Java source file (*.java) into a bytecode file (*.class).

JButton
A simple clickable widget.

JComponent
A high-level Swing class from which many other components receive their core functionality.

422 JDK 1.0

JDK 1.0
The original release of the Java Software Development Kit, whose event model has now been
deprecated.

JFileChooser
A Swing component used to retrieve the names of files.

JFrame
The fundamental Window in Java; it cannot be contained in another container.

JLabel
A Swing widget used to place text in relation to an icon.

JPanel
A low–level Container used to hold other Containers; can also be used as a drawing surface.

JScrollBar
A Swing widget used to visually select a single value from a range.

JScrollPane
A Swing text-entry widget that adds scrolling functionality to other components.

JTextArea
A multiline text-entry widget in Swing

JTextField
A single-line text-entry widget in Swing.

label
An identifier that points to a specific line of the code to where a loop can break or continue.

layout managers
Objects used to control the positioning of Components within a Container.

length property
A characteristic of an array; more specifically, how many elements it contains.

life cycle
The life of an applet as defined by the init(), start(), stop() and destroy() methods.

listeners
Classes that listen for, and usually process, the events generated by an event source. Such classes will
implement an appropriate listener interface.

literal
A representation of an actual value for a data type. For example; 12 is a literal integer.

local variable
Variables defined inside of a method; they are not available when the method is not running.

logical operators
Operators &, |, ^, and ~ used on primitive data types to perform bitwise operations.

lower-level container
A Container that must be contained in another Container as in a JPanel.

main thread
The user thread created by the JVM from which all other user threads are generated.

object 423

member
A general term for both methods and variables.

member inner class
An inner class defined at the same scope as a method or instance variable.

method
A “callable” block of code defined within a class.

method signature
The method name and parameter types; the return type is not included in the signature.

modal
A property designating that a component blocks its parent Component until properly responded to.

monitor
In essence, the lock and key for an object

multiprocessing
The ability to run multiple processes (applications) in parallel.

multitasking
The ability to perform more than one function simultaneously.

multithreading
The ability to perform multiple lines of instruction within a single process.

mutator
A method that modifies a variable.

MyCloseableFrame$ MyButtonListener.class
The $ is the notation that the Java Compiler uses to identify an inner class.

nesting
The use of Containers within Containers to achieve sophisticated layouts or the use of
conditionals within other conditionals.

networking
Computer-to-computer communication across a distance.

new
A keyword that signals the JVM to allocate space for an object.

new
The state of a thread once it has been instantiated.

no-arguments constructor
A constructor for a class having no parameters; the default constructor is an example.

not runnable
The state of a thread when it is removed from the runnable queue but is not dead.

object
A generic term for non-primitive data types; objects represent data and the operations on data.

object
An instance of a class, with unique data and operations.

424 OutputStream

OutputStream
The abstract class from which all other output byte streams are derived.

OutputStreamWriter
A utility stream that converts a character stream into a byte stream for output.

overloading
Two or more methods with the same name and different parameter types; they usually implement
similar types of operations.

overridden method
A method in a derived class with the same method signature as that of a method in the superclass; it
replaces the superclass method for the subclass.

package
A collection of classes designated by the package keyword; Java stores the classes in a directory
structure based on the package.

paint()
An inherited method from Container that allows painting to the applet surface.

paintComponent
(Graphics g)

A method inherited from JComponent that is passed a reference to the graphics context of that
component.

parameter
Information sent to a called method which includes data type and local name.

parameter tags
Optional name/value tags that send information to an applet from within the HTML page.

pass by reference
A pointer to the data is passed to a method; changes made to the data by a method are also made to
the original data. Although Java always uses pass by value for primitive data types, pass by reference is
used for non-primitive data types because the value for a non-primitive type is a reference.

pass by value
A copy of the value of the variable is available to the method; changes to the copy do not affect the
original value; used by Java for primitive data types.

persistent
The ability to maintain a prior state.

polymorphism
Using one method name to invoke many different methods.

port
An integer from 0 to 65535 representing a particular path for information flow, a specific protocol is
typically associated with a particular port; usually associated with networking.

pre-emptive multitasking
A system of multitasking in which one task can pre-empt another task if it has a higher priority.

primitive data types
The basic data building blocks of the language; all the primitives consist of a single value.

servlet 425

private
Access modifier that is applied to the member only; restricts access to the class in which it is defined.

protected
Access modifier that allows the class to be seen by classes in the same package or subclasses in other
packages.

public
Access modifier that allows the class or member to be seen by every part of the program.

Reader
The abstract class from which all other input character streams are derived.

reference
Java stores the location of a non-primitive type in the variable; the actual memory for the type exists at
the pointed-to-memory location.

relational operators
Operators that compare values of variables; all evaluate to the boolean data type (false or true).

repaint()
A method of Component that is used to indirectly call paintComponent() for a graphics update.

run()
The method that contains the body of a thread.

runnable
The state of a thread once it has been started.

Runnable interface
An interface that prototypes the run() method, targeting it as a thread.

RuntimeException
A set of possible conditions that can occur in a program and cause an illegal operation.

sandbox
The strict security restrictions placed on applets.

scope
The range over which a variable is available for use.

SDK 1.2
The current release of SDK with a much improved event model.

SecurityManager
A Java class used by browsers to set security restrictions on an applet.

Serializable interface
An interface that marks an object to be serialized.

serialization
The process of maintaining an object's state by converting it into a byte stream.

ServerSocket
A class in Java that represents the socket model for servers.

servlet
A small Java application that runs on a server.

426 setColor()

setColor()
An overloaded method of the Graphics class that establishes the current color of the graphics
context.

short-circuit operators
Operators that do not evaluate all the relational operations unless necessary.

signed applet
A digitally signed applet; if accepted by the user, security limitations are reduced.

Socket
A class in Java that represents the socket model for clients.

source
The Component that generates the event object.

stand-alone application
A Java program that need not be run in a browser.

start()
The second method called in the life cycle of an applet.

start()
The method that starts a thread by calling the run() method.

static
A keyword used to designate a class variable (and also a class method). Class methods and variables
exist only one time, as opposed to instance methods and variables that exist for each object of the
class.

stop()
A method that works in conjunction with start(); should be used to suspend resource-draining
code.

stream
A path of information from a source to a destination.

StringBuffer
A peer class to the String class; it is not immutable.

strongly typed
Requiring that the programmer specify the kind of information that each variable can hold; used to
describe a language.

super
The keyword used to refer to the superclass object; it allows you to call a method defined in the
superclass.

super
A keyword referring to the superclass of the current class.

superclass/subclass
The superclass is extended by the subclass. The subclass is derived from the superclass.

Swing
A GUI toolkit used by Java.

WindowListener 427

switch statement
A more complex conditional statement; chooses from multiple options.

synchronization
Controlling the flow of multiple, simultaneous threads.

synchronized
The keyword used to access an object's monitor.

System.in
Java's version of standard input (usually the keyboard).

System.out
Java's version of standard output (usually the monitor).

tag an object
Implementing a dummy interface on an object for the sole purpose of giving that object a type.

TCP/IP
The premier set of networking protocols used for the Internet.

this
A keyword that refers to the current object.

thread
A division of execution within a program. Each thread can be started and stopped and can wait for
other threads to suspend or run concurrently with them.

thread racing
Competition between two or more threads for the same resource.

thread states
The various ways of describing the current state of a thread.

top-level container
A Container that cannot be contained in another Container as in a JFrame.

transient
A member marked as transient will not be serialized.

type
Identifies the kind of information that a variable can store.

user thread
A thread created by other user threads with the purpose of being controlled by the programmer.

widgets
A term used to refer to visual Components of a GUI.

WIDTH/HEIGHT
Essential information needed to embed an applet; determines the size of the applet.

WindowListener
One of many interfaces that allow an object to receive certain events.

428 wrapper

wrapper
A class that wraps around other stream classes to add functionality.

Writer
The abstract class from which all other output character streams are derived.

429S E L F - S T U D Y

A

abstract class 148, 314, 377
Abstract Windowing Toolkit (AWT) 179
abstraction 158, 376
access 68, 78, 111, 355, 400
access keyword ... 52
Access modifier .. 167
accessor .. 169, 171
ActionEvents.. 261
ALIGN .. 297
ALT ... 297
Applet .. 300
applet6-7, 274, 294-295, 300-301, 308
application 6, 13, 51, 203, 263, 347
Arithmetic operators.................................. 24
array... 57, 71, 73
Array allocation ... 81
Array instantiation..................................... 68
ASCII.................................... 22, 28, 385-386
assignment statement 36
atomic process 359-360
AudioClip .. 301
Automatic garbage collection..................... 82
AWT................................ 259, 261, 293, 296

B

boolean expression36-37, 42-43
Boolean isActive() 301
BorderLayout........... 213, 218, 227, 231, 294
Box class .. 223, 225
BoxLayout 213, 221, 223
BufferedInputStream 382
BufferedReader 383, 389, 391
bytecode.. 7, 11-13

C

callback 123, 161, 273
casting.. 265, 387
catch .. 324
char .. 80
charAt .. 140
class.. 6, 51, 139, 265
Command line parameters 82
compiler ... 7, 11, 67
Concatenating ... 133
constructor............... 121-122, 124, 132, 185,

190, 196, 208, 216, 271, 321
Constructor Process................................. 129
Consumer/producer 362
container196-197, 203, 213-214,

223, 227, 293, 296
cooperative multitasking.......................... 330
coupling ... 171

D

data types 54, 57-59, 67, 78
DataInput .. 402
DataInputStream 382, 402
DataOutput ... 402
Dead ... 339-340
Deadlocks .. 368
default constructor........................... 123, 199
delegation model 260, 274
destroy()... 295
Directories ... 381
dispose()... 265
do while loop ... 43
dot notation ... 189
drag-and-drop .. 204

Index

430 Index

E

Encapsulation .. 171
equals ... 134, 139
equalsIgnoreCase 140
Errors ... 314, 316
event delegation 181
event delegation model 274
Event object 259, 261, 263-265
exceptions313-314, 316-317, 324, 385
Exercise 3-1

Using while and for loops 46
Exercise 4-1

Writing methods 62
Exercise 5-1

Using arrays .. 79
Exercise 6-1

Creating your own classes 98
Exercise 7-1

Implementing inheritance..................... 113
Exercise 8-1

Building constructors............................ 137
Exercise 8-2

Implementing callbacks 138
Exercise 10-1

Using encapsulation, accessors and
mutators.. 173

Exercise 13-1
Drawing to your Scribble JFrame.......... 252

Exercise 16-1
Converting the Scribble

application into an applet.................. 308
expression ... 36-37

F

File I/O .. 391
FileInputStream....................................... 383
FileOutputStream............................ 393, 397
FileReader .. 383
FileWriter .. 383, 391
FlowLayout............... 213-214, 221, 231, 294
flush ... 384, 386
for loop .. 43, 69

G

Garbage Collection 76, 133, 295, 330
getAppletContext 301
getName .. 338
Glue components..................................... 225
Graduating Task #1

Creating a binary search.......................... 79
Graduating Task #2

Interfaces and polymorphism................ 161
Graduating Task #3

Creating sophisticated layouts 230
Graduating Task #4

Event-enabling the Scribble application 286
Graduating Task #5

Creating a threaded digital clock........... 346
Graduating Task #6

Enhancing the digital clock with advanced
thread techniques 369

Graduating Task #7
Building a simple word processor.......... 400

Graphics .. 296, 329
GUI 167, 181, 190, 199, 227, 273, 302,

346-347, 400

H

HTML294, 298-299, 301-302, 306
HTML file ... 14

I

if statement .. 38, 42
Image getImage()..................................... 301
ImageIcon 184-185, 187, 190
immutable 133, 136
import.. 72, 166
index .. 70, 80, 140
indexOf.. 140
information hiding 169, 171
Inheritance....................... 109, 111, 128, 265
init().................................. 294-295, 301, 306
input.txt... 391
InputStream376-377, 382-384
InputStreamReader 383, 387
interface 147, 214, 259, 262, 264-265,

267, 274, 294, 336, 393

Index 431

Interface functions 149
interobject communication..................... 123,

130, 132, 150
ItemEvents... 261
Iteration (Loop) Statements 42

J

JApplet..................................... 231, 294, 301
Java .. 213, 231
Java application.. 52
Java Certified Programmer 231
Java compiler ... 61
Java Development Kit (JDK)............ 7-8, 179
Java primitive data types............................ 19
Java Runtime Environment (JRE) 8
Java Virtual Machine 180, 294
Java virtual machine 52
Java Virtual Machine (JVM)........................ 7
java.applet .. 294
java.awt .. 274
JavaBeans 172, 261, 393
JButton 183, 187, 203, 206-207,

221, 227, 259, 263
JCheckboxMenuItems 261
JComponent 183, 187
JDK ... 377
JFileChooser 184, 199, 401
JFrame 184, 189, 200, 203-204,

219, 231, 265, 268, 294, 302, 306, 400
JLabel............................... 183, 186, 190, 231
JPanel 184, 203, 206, 221, 231
JScroll 193, 196, 203
JText ... 184, 194-196
JTextArea.................................. 271, 400-401
JTextField .. 259, 261
JVM .. 11-12, 265

L

labels .. 45
lastIndexOf .. 140
Layout Manager....................................... 213
layout manager 214, 219, 227, 231, 294
length.. 139, 382-383
LineNumberInputStream 383
Linux ... 8, 180

listeners.................................... 261, 263, 274
Logical operators 26
loop.. 386

M

main thread ... 334
main() 166, 265, 295, 301, 306
main() method ... 6
method 74, 110, 114, 201,

263, 266-267, 274
method declaration 51, 53, 57, 72, 76
mkdir() .. 379, 381
Model View Controller (MVC) 182
modifiers.. 167
monitor.. 362
Multi-Document Interface (MDI) 204
multiprocessing 329
mutator ... 169-171

N

native ... 12, 316
Nested loops .. 44, 47
new keyword 68, 76, 121
New thread .. 339
no-arguments constructor........................ 128
not runnable .. 339
notify()... 338

O

object 24, 67-68, 123, 127, 130,
132, 134, 201, 203, 208, 261, 263, 301, 316

object-oriented programming 61, 123, 149
open streams .. 295
operators .. 19, 36

P

packages ... 9
paint() ... 295-296
Panel .. 231, 306
parameter tags ... 298
Parameters ... 78
parameters 56, 58, 78, 123, 126-127, 306
pass by reference .. 58
pass by value .. 74

432 Index

Polymorphism ... 151
polymorphism ... 161
primitive data type..................................... 52
primitive data types 79

R

read()338, 377, 382-383, 385-386
readLine() .. 382, 389
reference .. 68
resume()... 338
return type 76, 121, 123
run()................................. 336, 338, 340, 346
Runnable ... 335
runnable... 339
RuntimeException 314, 316, 324

S

security 171, 294, 300
SecurityManager...................................... 300
seek().. 402
serialization....................... 168, 393-394, 400
servlet... 293
setName() .. 338
setVisible() 265, 302
Single-line .. 14
single-line .. 15
sleep() .. 338, 342
sources ... 9, 261
Stand-alone application 11
start() ... 295
startTimer() ... 346
static .. 36, 165, 173
stop() ... 295
streams.............. 376-377, 382, 384, 389, 402
StringBuffer 132-133, 136
Strings...................... 132, 134-135, 137, 139,

298, 400, 402
subclass 109, 111, 173, 274, 313-314,

332, 335, 337, 377
substring .. 140
Super ... 128
superclass 109, 111, 114, 128, 314
suspend() .. 338-339
Swing 181, 207, 223, 268, 294
switch/case statement 38, 40

Synchronization 173
System.exit() .. 265

T

this .. 126-127
Thread states 339-340
Threads.. 173
threads 295, 329, 331-332
toLowerCase .. 139
toUpperCase .. 139
trim .. 140
try/catch.................................... 316-317, 324
type .. 324

U

URL getCodeBase() 301
URL getDocumentBase() 301

V

variables 36, 80, 122, 169, 173
Video

Inheritance ... 105
Java API Interface 147
Java Array ... 67
Layout Manager.................................... 213
Subclasses ... 87

void .. 121, 167
Void play() ... 301
Void resize()... 301
Void showStatus() 301

W

wait .. 361
while loop ... 42-43
widgets... 180
WindowEvents .. 261
Writer 376-377, 383, 402

	Java Programming Fundamentals
	Table of Contents
	Introduction
	Course Purpose
	Course Goals
	Exercises
	Scenario-Based Learning
	Multimedia Overview
	Videos
	Assessment

	Hardware and Software Requirements

	Java Runtime Environment
	Objectives
	Pre-Test Questions
	Introduction
	The Java Virtual Machine
	The Java 2 Software Development Kit
	Installation
	Windows 95/98/Me
	Windows NT/2000
	Linux
	Creating a Simple, Stand-Alone Application

	Creating a Simple Applet
	Java Comments
	Sun Certification
	Summary
	Post-Test Questions

	Data Types, Variables and Operators
	Objectives
	Pre-Test Questions
	Introduction
	Data Types
	Variables
	Default variable values
	Variable declaration and initialization

	Casting
	Operators
	Arithmetic operators
	Relational operators
	Logical operators

	Precedence
	Sun Certification
	Summary
	Post-Test Questions

	Control Statements
	Objectives
	Pre-Test Questions
	Introduction
	Code Blocks
	Expressions
	Conditional Statements
	if statement
	switch/case statement

	Iteration (Loop) Statements
	while loop (entry condition loop)
	do while loop (exit condition loop)
	for loop
	Nested loops (break and continue)
	Exercise 3-1: Using while and for loops

	Sun Certification
	Summary
	Post-Test questions

	Methods
	Objectives
	Pre-Test Questions
	Introduction
	Methods
	Return Statement
	Calling a Method
	Parameters
	Pass by Value
	Overloading
	Exercise 4-1: Writing methods

	Sun Certification
	Summary
	Post-Test Questions

	Arrays
	Objectives
	Pre-Test Questions
	Introduction
	What Is an Array?
	Initializing an Array
	Using an Array
	Passing an Array to a Method
	Methods with an Array Return Type
	Garbage Collection
	Command Line Parameters
	Exercise 5-1: Using arrays

	Graduating Task #1: Creating a binary search
	Sun Certification
	Summary
	Post-Test Questions

	Classes and Objects
	Objectives
	Pre-Test Questions
	Introduction
	Object-Oriented Programming
	What Is a Class?
	What Is an Object?
	Instance and Class Members
	Instance members
	Class members

	Abstraction
	Object References
	Exercise 6-1: Creating your own classes

	Sun Certification
	Summary
	Post-Test Questions

	Inheritance
	Objectives
	Pre-Test Questions
	Introduction
	What Is Inheritance?
	Using inheritance

	Extending Classes
	Using this and super()
	The instanceof Operator

	Overriding Methods
	Exercise 7-1: Implementing inheritance

	Sun Certification
	Summary
	Post-Test Questions

	Constructors
	Objectives
	Pre-Test Questions
	Introduction
	What Is a Constructor?
	What can constructors do?

	Using Constructors
	This
	this() as a constructor
	Avoiding namespace conflicts
	Super

	Constructor Process
	Constructors and Callbacks
	Strings and StringBuffer
	String constructors
	String characteristics
	Methods of String
	StringBuffer
	Exercise 8-1: Building constructors
	Exercise 8-2: Implementing callbacks

	Sun Certification
	Summary
	Post-Test Questions

	Interfaces and Abstract Classes
	Objectives
	Pre-Test Questions
	Introduction
	What Is an Interface?
	Contents of an interface
	Interface functions

	Polymorphism
	What Is an Abstract Class?
	Graduating Task #2: Interfaces and Polymorphism
	Sun Certification
	Summary
	Post-Test Questions

	Packages and Access Modifiers
	Objectives
	Pre-Test Questions
	Introduction
	Packages and Access Modifiers
	Packages
	Access modifiers

	Comparison Between Java 1.1 And Java 2
	Information Hiding
	Encapsulation
	Exercise 10-1: Using encapsulation, accessors and mutators

	Sun Certification
	Summary
	Post-Test Questions

	Swing Components
	Objectives
	Pre-Test Questions
	Introduction
	What Is the AWT?
	Heavyweight components (peer pattern)
	AWT 1.1

	What Is Swing?
	Model View Controller (MVC) programming paradigm

	Basic Swing Components
	Graphical widgets
	Containers

	JavaBeans
	Sun Certification
	Summary
	Post-Test Questions

	Layout Managers
	Objectives
	Pre-Test Questions
	Introduction
	What Is a Layout Manager?
	FlowLayout
	GridLayout
	BorderLayout
	BoxLayout

	Swing
	Strut
	Glue
	Combining layouts

	Graduating Task #3: Creating sophisticated layouts
	Sun Certification
	Summary
	Post-Test Questions

	Graphics
	Objectives
	Pre-Test Questions
	Introduction
	What Are Graphics in Java?
	Graphics Class
	drawString()
	drawLine()
	drawRect()
	drawImage()
	Color class
	Font class
	Exercise 13-1: Drawing to your Scribble JFrame

	Sun Certification
	Summary
	Post-Test Questions

	The Delegation Model
	Objectives
	Pre-Test Questions
	Introduction
	What Is an Event?
	SDK 1.3 Event Handling
	Generating the event object
	Sending the event object to the listener
	Preparing the listener to receive the event
	Example: Creating a closeable JFrame
	JFrame convenience methods for event handling
	Example: Event handling and callbacks

	Sun Certification
	Summary
	Post-Test Questions

	Inner Classes
	Objectives
	Pre-Test Questions
	Introduction
	What Is an Inner Class?
	Inner Classes for Event Handling
	Graduating Task #4: Event-enabling the Scribble Application
	Sun Certification
	Summary
	Post-Test Questions

	Applets
	Objectives
	Pre-Test Questions
	Introduction
	Applets and Web Browsers
	JApplets
	Applet life cycle
	The <APPLET></APPLET> tags
	Passing parameters to applets
	Applets should not be trusted

	Converting an Application into an Applet
	Converting an Applet into an Application
	Exercise 16-1: Converting the Scribble application into an applet

	Sun Certification
	Summary
	Post-Test Questions

	Exceptions
	Objectives
	Pre-Test Questions
	Introduction
	What Is an Exception?
	Errors
	Exceptions

	When Bad Things Happen to Good Programs
	Ignoring the Exception
	Handling the Exception
	Throwing the Exception to the calling method
	Handling and rethrowing the Exception

	Creating and Throwing Your Own Exceptions
	Exception Handling Tips
	Sun Certification
	Summary
	Post-Test Questions

	Creating Threads and Thread Methods
	Objectives
	Pre-Test Questions
	Introduction
	What Are Threads?
	How Operating Systems Handle Multitasking
	Types of Threads in Java
	Creating Threads
	Subclassing the Thread class
	Implementing the Runnable interface
	Which technique?
	Thread states
	The currentThread(), getName() and sleep() methods
	The setName() and setPriority() methods
	The yield() method

	Graduating Task #5: Creating a threaded digital clock
	Sun Certification
	Summary
	Post-Test Questions

	Synchronization
	Objectives
	Pre-Test Questions
	Introduction
	What Is Thread Synchronization?
	Thread Racing
	Synchronized and the Object Monitor
	Thread Race Condition
	Competing for resources
	Synchronizing the methods
	Atomic processes

	Sophisticated Thread Synchronization
	Consumer/producer scenario

	Deadlocks
	Graduating Task #6: Enhancing the Digital Clock with Advanced Thread Techniques
	Sun Certification
	Summary
	Post-Test Questions

	Streams and Serialization
	Objectives
	Pre-Test Questions
	Introduction
	What Is a Stream?
	InputStream, OutputStream, Reader and Writer
	Files
	Instantiating a File object
	Working with a File object

	Stream Classes of java.io.*
	System.in and System.out
	Reading bytes from System.in
	Converting a byte stream into a character stream
	Wrapper streams
	File I/O

	Serialization
	The process of object serialization
	Transient variables and security

	Graduating Task #7: Building a Simple Word Processor
	Sun Certification
	Summary
	Post-Test Questions

	Appendix A—Answers to Pre�Test�and�Post�Test�Questions
	Glossary
	Index

